ﻻ يوجد ملخص باللغة العربية
Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number of fractional quantum Hall states at filling factors of the form $ u=n/(2pnpm 1)$, where $n$ and $p$ are integers, from the explicit wave functions for these states. The calculated Hall viscosities $eta^A$ agree with the expression $eta^A=(hbar/4) {cal S}rho$, where $rho$ is the density and ${cal S}=2ppm n$ is the shift in the spherical geometry. We discuss the role of modular invariance of the wave functions, of the center-of-mass momentum, and also of the lowest-Landau-level projection. Finally, we show that the Hall viscosity for $ u={nover 2pn+1}$ may be derived analytically from the microscopic wave functions, provided that the overall normalization factor satisfies a certain behavior in the thermodynamic limit. This derivation should be applicable to a class of states in the parton construction, which are products of integer quantum Hall states with magnetic fields pointing in the same direction.
In 1929 Felix Bloch suggested that the paramagnetic Fermi sea of electrons should make a spontaneous transition to a fully-magnetized state at very low densities, because the exchange energy gained by aligning the spins exceeds the enhancement in the
Motivated by recent experiments on the phonon contribution to the thermal Hall effect in the cuprates, we present an analysis of chiral phonon transport. We assume the chiral behavior arises from a non-zero phonon Hall vicosity, which is likely induc
Two-dimensional interacting electrons exposed to strong perpendicular magnetic fields generate emergent, exotic quasiparticles phenomenologically distinct from electrons. Specifically, electrons bind with an even number of flux quanta, and transform
Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-Abelian braid statistics and topological quantum computation. We construct a $p$-wave paired Bardeen-Cooper-Schrieffer (BCS) wave function for comp
We propose a (4+1) dimensional Chern-Simons field theoretical description of the fractional quantum Hall effect. It suggests that composite fermions reside on a momentum manifold with a nonzero Chern number. Based on derivations from microscopic wave