ترغب بنشر مسار تعليمي؟ اضغط هنا

Colloidal nanoparticles, used for applications from catalysis and energy applications to cosmetics, are typically embedded in matrixes or dispersed in solutions. The entire particle surface, which is where reactions are expected to occur, is thus exp osed. Here we show with x-ray pair distribution function analysis that polar and non-polar solvents universally restructure around nanoparticles. Layers of enhanced order exist with a thickness influenced by the molecule size and up to 2 nanometers beyond the nanoparticle surface. These results show that the enhanced reactivity of solvated nanoparticles includes a contribution from a solvation shell of the size of the particle itself.
We report the characterisation of natural samples of the cubic pyrite mineral MnS2 using very high resolution synchrotron X-ray diffraction techniques. At low temperatures we find a new low temperature polymorph, which results from coupling between m agnetic and lattice degrees of freedom. Below the magnetic ordering temperature T_N= 48 K, we detect a pseudo-tetragonal distortion with a tiny c/a ratio of 1.0006. The structure can be refined in the space group Pbca. The symmetry lowering reduces magnetic frustration in the fcc Mn2+ lattice and is likely responsible for the previously reported lock-in of the magnetic propagation vector. This behaviour is similar to the frustration driven symmetry breaking reported in other three-dimensional Heisenberg magnets like the chromate spinels
Dramatic volume collapses under pressure are fundamental to geochemistry and of increasing importance to fields as diverse as hydrogen storage and high-temperature superconductivity. In transition metal materials, collapses are usually driven by so-c alled spin-state transitions, the interplay between the single-ion crystal field and the size of the magnetic moment. Here we show that the classical S=5/2 mineral Hauerite undergoes an unprecedented 22 % collapse driven by a conceptually different magnetic mechanism. Using synchrotron x-ray diffraction we show that cold compression induces the formation of a disordered intermediate. However, using an evolutionary algorithm we predict a new structure with edge-sharing chains. This is confirmed as the thermodynamic groundstate using in situ laser heating. We show that magnetism is globally absent in the new phase, as low-spin quantum S=1/2 moments are quenched by dimerisation. Our results show how the emergence of metal-metal bonding can stabilise giant spin-lattice coupling in Earths minerals.
We report a comprehensive investigation of the average and local structure of La$_{5.4}$WO$_{12-delta}$, which has excellent mixed proton, electron and oxide ion conduction suitable for device applications. Synchrotron X-ray and neutron powder diffra ction show that a cubic fluorite supercell describes the average structure, with highly disordered lanthanum and oxide positions. On average the tungsten sites are six-fold coordinated, and we detect a trace (4.4(2) %) of anti-site disorder. In addition to sharp Bragg reflections, strong diffuse neutron scattering is observed, which hints at short-range order. We consider plausible local configurations, and show that the defect chemistry implies a simple chemical exchange interaction that favours ordered WO6 octahedra. Our local model is confirmed by synchrotron x-ray pair distribution function analysis and EXAFS experiments performed at the La K and W L3-edges. We show that ordered domains of around ca. 3.5 nm are found, implying that mixed conduction in La$_{5.4}$WO$_{12-delta}$? is associated with a defective glassy-like anion sublattice. The origins of this ground state are proposed to lie in the non-bipartite nature of the fcc lattice and the pairwise interactions which link the orientation of neighbouring octahedral WO6 sites. This function through frustration could provide a means of designing new mixed conductors.
We report a combination of physical property and neutron scattering measurements for polycrystalline samples of the one-dimensional spin chain compound CoV2O6. Heat capacity measurements show that an effective S = 1/2 state is found at low temperatur es and that magnetic fluctuations persist up to 6.Tn. Above Tn = 6.3 K, measurements of the magnetic susceptibility as a function of T and H show that the nearest neighbour exchange is ferromagnetic. In the ordered state, we have discovered a crossover from a metamagnet with strong fluctuations between 5 K and Tn to a state with a 1/3 magnetisation plateau at 2 < T < 5 K. We use neutron powder diffraction measurements to show that the AFM state has incommensurate long range order and inelastic time of flight neutron scattering to examine the magnetic fluctuations as a function of temperature. Above Tn, we find two broad bands between 3.5 and 5 meV and thermally activated low energy features which correspond to transitions within these bands. These features show that the excitations are deconfined solitons rather than the static spin reversals predicted for a uniform FM Ising spin chain. Below Tn, we find a ladder of states due to the confining effect of the internal field. A region of weak confinement below Tn, but above 5 K, is identified which may correspond to a crossover between 2D and 3D magnetic ordering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا