ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal solvent restructuring induced by colloidal nanoparticles

66   0   0.0 ( 0 )
 نشر من قبل Simon Kimber Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Colloidal nanoparticles, used for applications from catalysis and energy applications to cosmetics, are typically embedded in matrixes or dispersed in solutions. The entire particle surface, which is where reactions are expected to occur, is thus exposed. Here we show with x-ray pair distribution function analysis that polar and non-polar solvents universally restructure around nanoparticles. Layers of enhanced order exist with a thickness influenced by the molecule size and up to 2 nanometers beyond the nanoparticle surface. These results show that the enhanced reactivity of solvated nanoparticles includes a contribution from a solvation shell of the size of the particle itself.

قيم البحث

اقرأ أيضاً

We employ 3D Langevin Dynamics simulations to study the dynamics of polymer chains translocating through a nanopore in presence of asymmetric solvent conditions. Initially a large fraction ($>$ 50%) of the chain is placed at the textit{cis} side in a good solvent while the $trans$ segments are placed in a bad solvent that causes the chain to collapse and promotes translocation from the $cis$ to the $trans$ side. In particular, we study the ratcheting effect of a globule formed at the textit{trans} side created by the translocated segment, and how this ratchet drives the system towards faster translocation. Unlike in the case of unbiased or externally forced translocation where the mean first passage time $langle tau rangle $ is often characterized by algebraic scaling as a function of the chain length $N$ with a single scaling exponent $alpha$, and the histogram of the mean first passage time $P(tau/langletau rangle)$ exhibits scaling, we find that scaling is not well obeyed. For relatively long chains we find $langle tau rangle sim N^alpha$ where $alpha approx 1$ for $varepsilon/k_{B}T > 1$. In this limit, we also find that translocation proceeds with a nearly constant velocity of the individual beads(monomers), which is attributed to the coiling of the globule. We provide an approximate theory assuming rotat ional motion restricted on a 2D disc to demonstrate that there is a crossover from diffusive behavior of the center of mass for short chains to a single file translocation for long chains, where the average translocation time scales linearly with the chain length $N$.
Due to their physical properties and potential applications in energy conversion and storage, transition metal dichalcogenides (TMDs) have garnered substantial interest in recent years. Amongst this class of materials, TMDs based on molybdenum, tungs ten, sulfur and selenium are particularly attractive due to their semiconducting properties and the availability of bottom-up synthesis techniques. Here we report a method which yields high quality crystals of transition metal diselenide and ditelluride compounds (PtTe2, PdTe2, NiTe2, TaTe2, TiTe2, RuTe2, PtSe2, PdSe2, NbSe2, TiSe2, VSe2, ReSe2) from their solid solutions, via vapor deposition from a metal-saturated chalcogen melt. Additionally, we show the synthesis of rare-earth metal poly-chalcogenides and NbS2 crystals using the aforementioned process. Most of the obtained crystals have a layered CdI2 structure. We have investigated the physical properties of selected crystals and compared them to state-of-the-art findings reported in the literature. Remarkably, the charge density wave transition in 1T-TiSe2 and 2H-NbSe2 crystals is well-defined at TCDW ~ 200 K and ~ 33 K, respectively. Angle-resolved photoelectron spectroscopy and electron diffraction are used to directly access the electronic and crystal structures of PtTe2 single crystals, and yield state-of-the-art measurements.
Bimetallic catalysts can undergo segregation or redistribution of the metals driven by oxidizing and reducing environments. Bragg coherent diffraction imaging (BCDI) was used to relate displacement fields to compositional distributions in crystalline Pt-Rh alloy nanoparticles. 3D images of internal composition showed that the radial distribution of compositions reverses partially between the surface shell and the core when gas flow changes between O2 and H2. Our observation suggests that the elemental segregation of nanoparticle catalysts should be highly active during heterogeneous catalysis and can be a controlling factor in synthesis of electrocatalysts. In addition, our study exemplifies applications of BCDI for in situ 3D imaging of internal equilibrium compositions in other bimetallic alloy nanoparticles.
The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibl y via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.
Room-temperature ferromagnetism has been observed in the nanoparticles (7 - 30 nm dia) of nonmagnetic oxides such as CeO2, Al2O3, ZnO, In2O3 and SnO2. The saturated magnetic moments in CeO_2 and Al_2O_3 nanoparticles are comparable to those observed in transition metal doped wide band semiconducting oxides. The other oxide nanoparticles show somewhat lower values of magnetization but with a clear hysteretic behavior. Conversely, the bulk samples obtained by sintering the nanoparticles at high temperatures in air or oxygen became diamagnetic. As there were no magnetic impurities present, we assume that the origin of ferromagnetism may be due to the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of nanoparticles. We suggest that ferromagnetism may be a universal characteristic of nanopartilces of metal oxides
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا