ترغب بنشر مسار تعليمي؟ اضغط هنا

We have calculated continuum limit step scaling functions of bilinear and four-fermion operators renormalized in a Rome-Southampton scheme using various smearing prescriptions for the gauge field. Also, for the first time, we have calculated non-pert urbative anomalous dimensions of operators renormalized in a Rome-Southampton scheme. The effect of such smearing first enters connected fermionic correlation functions via radiative corrections. We use off-shell renormalisation as a probe, and observe that the upper edge of the Rome-Southampton window is reduced by link smearing. This can be interpreted as arising due to the fermions decoupling from the high momentum gluons and we observe that the running of operators with the scale at large lattice momenta shows enhanced lattice artefacts. We find that the effect is greater for HEX smearing than for Stout smearing, but that in both cases additional care must be taken when using off-shell renormalisation with smeared gauge fields compared to thin link simulations.
139 - H. Fujii , K. Hara , S. Hashimoto 2013
The performance of a muon radiography system designed to image the inner structure of a nuclear plant located at a distance of 64 m was evaluated. We concluded absence of the fuel in the pressure vessel during the measurement period and succeeded in profiling the fuel material placed in the storage pool. The obtained data also demonstrated the sensitivity of the system to water level changes in the reactor well and the dryer-separator pool. It is expected that the system could reconstruct a 2 m cubic fuel object easily. By operating multiple systems, typically four identical systems, viewing the reactor from different directions simultaneously, detection of a 1 m cubic object should also be achievable within a few month period.
We consider how to extract the pion form factors in the epsilon regime. Using the correlators with non-zero momenta and taking appropriate ratios of them, we eliminate the dominant finite volume effect from the zero-momentum pion mode. Our preliminar y lattice result for the pion charge radius is consistent with the experiment.
We report on a lattice simulation result for four-dimensional {cal N}=1 SU(2) super Yang-Mills theory with the dynamical overlap gluino. We study the spectrum of the overlap Dirac operator at three different gluino masses m=0.2, 0.1 and 0.05 with the Iwasaki action on a 8^3 times 16 lattice. We find that the lowest eigenvalue distributions are in good agreement with the prediction from the random matrix theory. Moreover the mass dependence of the condensate is almost constant, which gives a clean chiral limit. Our results for the gluino condensate in the chiral limit is < bar{psi} psi > r_0^3 = 0.63(12), where r_0 is the Sommer scale.
A simulation of lattice QCD at (or even below) the physical pion mass is feasible on a small lattice size of sim 2 fm. The results are, however, subject to large finite volume effects. In order to precisely understand the chiral behavior in a finite volume, we develop a new computational scheme to interpolate the conventional epsilon and p regimes within chiral perturbation theory. In this new scheme, we calculate the two-point function in the pseudoscalar channel, which is described by a set of Bessel functions in an infra-red finite way as in the epsilon regime, while chiral logarithmic effects are kept manifest as in the p regime. The new ChPT formula is compared to our 2+1- flavor lattice QCD data near the physical up and down quark mass, mud sim 3 MeV on an L sim 1.8 fm lattice. We extract the pion mass = 99(4) MeV, from which we attempt a chiral interpolation of the observables to the physical point.
The transport properties, upper critical fields, superconducting anisotropy, and critical current density in an iso-valent phosphorus-doped BaFe2As2 single crystal close to optimum doping are investigated in this report. Temperature dependent resisti vity and susceptibility show a superconducting transition temperature, Tc, just below 31 K both with sharp transitions. The upper critical field parallel to the ab-plane, Hc2^ab, is above 77 Tesla while that along the c-axis direction, Hc2^c, is just above 36 Tesla, yielding a low superconducting anisotropy ratio ~ 2. The estimated inter-plane coherence length based on the Ginzburg-Landau (G-L) theory indicates BaFe2(As0.68P0.32)2 is still above the point for a dimensional crossover inferring the superconducting layers are not weakly-coupled in this system. The critical current density at 5 K obtained from magnetization loops measurement show a modest Jc as high as 10^5 A/cm2.
We determine the topological susceptibility chi_t in the topologically-trivial sector generated by lattice simulations of N_f = 2+1 QCD with overlap Dirac fermion, on a 16^3 x 48 lattice with lattice spacing ~ 0.11 fm, for five sea quark masses m_q r anging from m_s/6 to m_s (where m_s is the physical strange quark mass). The chi_t is extracted from the plateau (at large time separation) of the 2-point and 4-point time-correlation functions of the flavor-singlet pseudoscalar meson eta, which arises from the finite size effect due to fixed topology. In the small m_q regime, our result of chi_t agrees with the chiral effective theory. Using the formula chi_t = Sigma(m_u^{-1} + m_d^{-1} + m_s^{-1})^{-1} by Leutwyler-Smilga, we obtain the chiral condensate Sigma^{MSbar}(2 GeV) = [249(4)(2) MeV]^3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا