ﻻ يوجد ملخص باللغة العربية
We determine the topological susceptibility chi_t in the topologically-trivial sector generated by lattice simulations of N_f = 2+1 QCD with overlap Dirac fermion, on a 16^3 x 48 lattice with lattice spacing ~ 0.11 fm, for five sea quark masses m_q ranging from m_s/6 to m_s (where m_s is the physical strange quark mass). The chi_t is extracted from the plateau (at large time separation) of the 2-point and 4-point time-correlation functions of the flavor-singlet pseudoscalar meson eta, which arises from the finite size effect due to fixed topology. In the small m_q regime, our result of chi_t agrees with the chiral effective theory. Using the formula chi_t = Sigma(m_u^{-1} + m_d^{-1} + m_s^{-1})^{-1} by Leutwyler-Smilga, we obtain the chiral condensate Sigma^{MSbar}(2 GeV) = [249(4)(2) MeV]^3.
We compute the topological susceptibility $chi_t$ of 2+1-flavor lattice QCD with dynamical Mobius domain-wall fermions, whose residual mass is kept at 1 MeV or smaller. In our analysis, we focus on the fluctuation of the topological charge density in
We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations
We present results for the topological susceptibility at nonzero temperature obtained from lattice QCD with four dynamical quark flavours. We apply different smoothing methods, including gradient Wilson flow and over--improved cooling, before calcula
We present results for the $Ktopipi$ decay amplitudes for both the $Delta I=1/2$ and $3/2$ channels. This calculation is carried out on 480 gauge configurations in $N_f=2+1$ QCD generated over 12,000 trajectories with the Iwasaki gauge action and non
Heavy-light meson system is investigated using the relativistic heavy quark action on the 2+1 dynamical flavor PACS-CS configurations at the lattice spacing $a^{-1}=2.2$ GeV and the spatial extent L=3 fm. Dynamical up-down and strange quark masses as