We consider how to extract the pion form factors in the epsilon regime. Using the correlators with non-zero momenta and taking appropriate ratios of them, we eliminate the dominant finite volume effect from the zero-momentum pion mode. Our preliminary lattice result for the pion charge radius is consistent with the experiment.
We present a calculation of pion electromagnetic and scalar form factors in two-flavor QCD with the non-perturbatively O(a)-improved Wilson fermion. Chiral extrapolation of the corresponding charge radius is discussed based on the chiral perturbation theory.
We calculate the pion vector and scalar form factors in two-flavor QCD. Gauge configurations are generated with dynamical overlap quarks on a 16^3 x 32 lattice at a lattice spacing of 0.12 fm with sea quark masses down to a sixth of the physical stra
nge quark mass. Contributions of disconnected diagrams to the scalar form factor is calculated employing the all-to-all quark propagators. We present a detailed comparison of the vector and scalar radii with chiral perturbation theory to two loops.
We present a numerical pilot study of the meson correlation functions in the epsilon-regime of chiral perturbation theory. Based on simulations with overlap fermions we measured the axial and pseudo-scalar correlation functions, and we discuss the im
plications for the leading low energy constants in the chiral Lagrangian.
A future Electron-Ion Collider will enable the gluon contributions to the gravitational form factors of the proton to be constrained experimentally for the first time. Here, the first calculation of these form factors from lattice Quantum Chromodynam
ics is presented. The calculations use a larger-than-physical value of the light quark mass corresponding to $m_pi sim 450$ MeV. All three form factors, which encode the momentum-dependence of the lowest moment of the spin independent gluon generalised parton distributions and are related to different components of the energy-momentum tensor, are resolved. In particular, the gluon $D$-term form factor, related to the pressure distribution inside the nucleon, is determined for the first time. The gluon contributions to the two gravitational form factors of the pion are also determined, and are compared to existing lattice determinations of the quark contributions to the gravitational form factors and to phenomenology.
We calculate pion vector and scalar form factors in two-flavor lattice QCD and study the chiral behavior of the vector and scalar radii <r^2>_{V,S}. Numerical simulations are carried out on a 16^3 x 32 lattice at a lattice spacing of 0.12 fm with qua
rk masses down to sim m_s/6, where m_s is the physical strange quark mass. Chiral symmetry, which is essential for a direct comparison with chiral perturbation theory (ChPT), is exactly preserved in our calculation at finite lattice spacing by employing the overlap quark action. We utilize the so-called all-to-all quark propagator in order to calculate the scalar form factor including the contributions of disconnected diagrams and to improve statistical accuracy of the form factors. A detailed comparison with ChPT reveals that the next-to-next-to-leading-order contributions to the radii are essential to describe their chiral behavior in the region of quark mass from m_s/6 to m_s/2. Chiral extrapolation based on two-loop ChPT yields <r^2>_V=0.409(23)(37)fm and <r^2>_S=0.617(79)(66)fm, which are consistent with phenomenological analysis. We also present our estimates of relevant low-energy constants.