ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress in the understanding of quantum critical properties of itinerant electrons has been hindered by the lack of effective models which are amenable to controlled analytical and numerically exact calculations. Here we establish that the disorder driven semimetal to metal quantum phase transition of three dimensional massless Dirac fermions could serve as a paradigmatic toy model for studying itinerant quantum criticality, which is solved in this work by exact numerical and approximate field theoretic calculations. As a result, we establish the robust existence of a non-Gaussian universality class, and also construct the relevant low energy effective field theory that could guide the understanding of quantum critical scaling for many strange metals. Using the kernel polynomial method (KPM), we provide numerical results for the calculated dynamical exponent ($z$) and correlation length exponent ($ u$) for the disorder-driven semimetal (SM) to diffusive metal (DM) quantum phase transition at the Dirac point for several types of disorder, establishing its universal nature and obtaining the numerical scaling functions in agreement with our field theoretical analysis.
We show that the emergence of the axial anomaly is a universal phenomenon for a generic three dimensional metal in the presence of parallel electric ($E$) and magnetic ($B$) fields. In contrast to the expectations of the classical theory of magnetotr ansport, this intrinsically quantum mechanical phenomenon gives rise to the longitudinal magnetoresistance for any three dimensional metal. However, the emergence of the axial anomaly does not guarantee the existence of negative longitudinal magnetoresistance. We show this through an explicit calculation of the longitudinal magnetoconductivity in the quantum limit using the Boltzmann equation, for both short-range neutral and long-range ionic impurity scattering processes. We demonstrate that the ionic scattering contributes a large positive magnetoconductivity $propto B^2$ in the quantum limit, which can cause a strong negative magnetoresistance for any three dimensional or quasi-two dimensional metal. In contrast, the finite range neutral impurities and zero range point impurities can lead to both positive and negative longitudinal magnetoresistance depending on the underlying band structure. In the presence of both neutral and ionic impurities, the longitudinal magnetoresistance of a generic metal in the quantum limit initially becomes negative, and ultimately becomes positive after passing through a minimum. We discuss in detail the qualitative agreement between our theory and recent observations of negative longitudinal magnetoresistance in Weyl semimetals TaAs and TaP, Dirac semimetals Na$_3$Bi, Bi$_{1-x}$Sb$_x$, and ZrTe$_5$, and quasi-two dimensional metals PdCoO$_2$, $alpha$-(BEDT-TTF)$_2$I$_3$ which do not possess any bulk three dimensional Dirac or Weyl quasiparticles.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$ _{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick-slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers.
Disorder is known to suppress the gap of a topological superconducting state that would support non-Abelian Majorana zero modes. In this paper, we study using the self-consistent Born approximation the robustness of the Majorana modes to disorder wit hin a suitably extended Eilenberger theory, in which the spatial dependence of the localized Majorana wave functions is included. We find that the Majorana mode becomes delocalized with increasing disorder strength as the topological superconducting gap is suppressed. However, surprisingly, the zero bias peak seems to survive even for disorder strength exceeding the critical value necessary for closing the superconducting gap within the Born approximation.
Combining experimental data, numerical transport calculations, and theoretical analysis, we study the temperature-dependent resistivity of high-mobility 2D Si MOSFETs to search for signatures of weak localization induced quantum corrections in the ef fective metallic regime above the critical density of the so-called two-dimensional metal-insulator transition (2D MIT). The goal is to look for the effect of logarithmic insulating localization correction to the metallic temperature dependence in the 2D conductivity so as to distinguish between the 2D MIT being a true quantum phase transition versus being a finite-temperature crossover. We use the Boltzmann theory of resistivity including the temperature dependent screening effect on charged impurities in the system to fit the data. We analyze weak perpendicluar field magnetoresistance data taken in the vicinity of the transition and show that they are consistent with weak localization behavior in the strongly disordered regime $k_Fellgtrsim1$. Therefore we supplement the Botzmann transport theory with a logarithmic in temperature quantum weak localization correction and analyze the competition of the insulating temperature dependence of this correction with the metallic temperature dependence of the Boltzmann conductivity. Using this minimal theoretical model we find that the logarithmic insulating correction is masked by the metallic temperature dependence of the Botzmann resistivity and therefore the insulating $log T$ behavior may be apparent only at very low temperatures which are often beyond the range of temperatures accessible experimentally. Analyzing the low-$T$ experimental Si MOSFET transport data we identify signatures of the putative insulating behavior at low temperature and density in the effective metallic phase.
280 - S. Das , K. Sen , I. Marozau 2014
Epitaxial La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 superlattices on (001)-oriented LaSrAlO4 substrates have been grown with pulsed laser deposition technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflecti on high energy electron diffraction, x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy, electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO and LCMO these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of about 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H || ab and a sizeable paramagnetic shift for H || c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of about 190 K and a large low-temperature saturation moment of about 3.5(1) muB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant mechanisms.
Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we show that such a protection against disorder does not exist in realistic multi-channel TI/SC/ferromagnetic insulator (FI) sandwich structures of experimental relevance since the time-reversal symmetry is explicitly broken locally at the SC/FI interface where the end Majorana mode (MM) resides. We find that although the MM itself and the emph{bulk} topological superconducting phase inside the TI are indeed universally protected against disorder, disorder-induced subgap states are generically introduced at the TI edge due to the presence of the FI/SC interface as long as multiple edge channels are occupied. We discuss the implications of the finding for the detection and manipulation of the edge MM in realistic TI/SC/FI experimental systems of current interest.
We theoretically consider the effect of plasmon collective modes on the frequency-dependent conductivity of graphene in the presence of the random static potential of charged impurities. We develop an equation of motion approach suitable for the rela tivistic Dirac electrons in graphene that allows analytical high-frequency asymptotic solution in the presence of both disorder and interaction. We show that the presence of the acoustic plasmon pole (i.e. the plasmon frequency vanishing at long wavelengths as the square-root of wavevector) in the inverse dynamical dielectric function of graphene gives rise to a strong variation with frequency of the screening effect of the relativistic electron gas in graphene on the potential of charged impurities. The resulting frequency-dependent impurity scattering rate gives rise to a broad peak in the frequency-dependent graphene optical conductivity with the amplitude and the position of the peak being sensitive to the detailed characteristics of disorder and interaction in the system. This sample (i.e. disorder, elecron density and interaction strength) dependent redistribution of the spectral weight in the frequency-dependent graphene conductivity may have already been experimentally observed in optical measurements.
241 - Jay D. Sau , S. Das Sarma 2013
Using Bogoliubov-de Gennes (BdG) equations we numerically calculate the disorder averaged density of states of disordered semiconductor nanowires driven into a putative topological p-wave superconducting phase by spin-orbit coupling, Zeeman spin spli tting and s-wave superconducting proximity effect induced by a nearby superconductor. Comparing with the corresponding theoretical self-consistent Born approximation (SCBA) results treating disorder effects, we comment on the topological phase diagram of the system in the presence of increasing disorder. Although disorder strongly suppresses the zero-bias peak (ZBP) associated with the Majorana zero mode, we find some clear remnant of a ZBP even when the topological gap has essentially vanished in the SCBA theory because of disorder. We explicitly compare effects of disorder on the numerical density of states in the topological and trivial phases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا