ﻻ يوجد ملخص باللغة العربية
Disorder is known to suppress the gap of a topological superconducting state that would support non-Abelian Majorana zero modes. In this paper, we study using the self-consistent Born approximation the robustness of the Majorana modes to disorder within a suitably extended Eilenberger theory, in which the spatial dependence of the localized Majorana wave functions is included. We find that the Majorana mode becomes delocalized with increasing disorder strength as the topological superconducting gap is suppressed. However, surprisingly, the zero bias peak seems to survive even for disorder strength exceeding the critical value necessary for closing the superconducting gap within the Born approximation.
The vortex of iron-based superconductors is emerging as a promising platform for Majorana zero mode, owing to a magic integration among intrinsic vortex winding, non-trivial band topology, strong electron-electron correlations, high-Tc superconductiv
We propose a topological field theory for a spin-less two-dimensional chiral superconductor that contains fundamental Majorana fields. Due to a fermionic gauge symmetry, the Majorana modes survive as dynamical degrees of freedom only at magnetic vort
In contrast to conventional s-wave superconductivity, unconventional (e.g. p or d-wave) superconductivity is strongly suppressed even by relatively weak disorder. Upon approaching the superconductor-metal transition, the order parameter amplitude bec
We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p-wave one-dimensional superconducting ring, pierced by a magnetic flux $Phi$ tuned at an appropriate value $Phi=Phi_*$. In the absence of fermion parity conservatio
Majorana zero modes are fractional quantum excitations appearing in pairs, each pair being a building block for quantum computation . Some possible signatures of these excitations have been reported as zero bias peaks at endpoints of one-dimensional