ترغب بنشر مسار تعليمي؟ اضغط هنا

Droplets move over viscoelastic substrates by surfing a ridge

120   0   0.0 ( 0 )
 نشر من قبل Stefan Karpitschka
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick-slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers.



قيم البحث

اقرأ أيضاً

Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid --structure interaction (FSIs) between a viscoelastic tube conveying compressible flow at low Reynolds number. We express the density of the fluid as a linear function of the pressure, and we use the lubrication approximation to further simplify the fluid dynamics problem. On the other hand, the structural mechanics is governed by a modified Donnell shell theory accounting for Kelvin--Voigt-type linearly viscoelastic mechanical response. The fluid and structural mechanics problems are coupled through the tubes radial deformation and the hydrodynamic pressure. For small compressibility numbers and weak coupling, the equations are solved analytically via a perturbation expansion. Three illustrative problems are analyzed. First, we obtain exact (but implicit) solutions for the pressure for steady flow conditions. Second, we solve the transient problem of impulsive pressurization of the tubes inlet. Third, we analyze the transient response to an oscillatory inlet pressure. We show that an oscillatory inlet pressure leads to acoustic streaming in the tube, attributed to the nonlinear pressure gradient induced by the interplay of FSI and compressibility. Furthermore, we demonstrate an enhancement in the volumetric flow rate due to FSI coupling. The hydrodynamic pressure oscillations are shown to exhibit a low-pass frequency response (when averaging over the period of oscillations), while the frequency response of the tube deformation is similar to that of a band-pass filter.
For a pendant drop whose contact line is a circle of radius $r_0$, we derive the relation $mgsinalpha={piover2}gamma r_0,(costheta^{rm min}-costheta^{rm max})$ at first order in the Bond number, where $theta^{rm min}$ and $theta^{rm max}$ are the con tact angles at the back (uphill) and at the front (downhill), $m$ is the mass of the drop and $gamma$ the surface tension of the liquid. The Bond (or Eotvos) number is taken as $Bo=mg/(2r_0gamma)$. The tilt angle $alpha$ may increase from $alpha=0$ (sessile drop) to $alpha=pi/2$ (drop pinned on vertical wall) to $alpha=pi$ (drop pendant from ceiling). The focus will be on pendant drops with $alpha=pi/2$ and $alpha=3pi/4$. The drop profile is computed exactly, in the same approximation. Results are compared with surface evolver simulations, showing good agreement up to about $Bo=1.2$, corresponding for example to hemispherical water droplets of volume up to about $50,mu$L. An explicit formula for each contact angle $theta^{rm min}$ and $theta^{rm max}$ is also given and compared with the almost exact surface evolver values.
The unsteady, lineal translation of a solid spherical particle through viscoelastic fluids described by the Johnson-Segalman and Giesekus models is studied analytically. Solutions for the pressure and velocity fields as well as the force on the parti cle are expanded as a power series in the Weissenberg number. The momentum balance and constitutive equation are solved asymptotically for a steadily translating particle up to second order in the particle velocity, and rescaling of the pressure and velocity in the frequency domain is used to relate the solutions for steady lineal translation to those for unsteady lineal translation. The unsteady force at third order in the particle velocity is then calculated through application of the Lorentz reciprocal theorem, and it is shown that this weakly nonlinear contribution to the force can be expressed as part of a Volterra series. Through a series of examples, it is shown that a truncated representation of this Volterra series, which can be manipulated to describe the velocity in terms of an imposed force, is useful for analyzing specific time-dependent particle motions. Two examples studied using this relationship are the force on a particle suddenly set into motion and the velocity of a particle in response to a suddenly imposed steady force. Additionally, the weakly nonlinear response of particle captured by a harmonic trap moving lineally through the fluid is computed. This is an analog to active microrheology experiments, and can be used to explain how weakly nonlinear responses manifest in active microrheology experiments with spherical probes.
We consider self-propelled droplets which are driven by internal flow. Tracer particles, which are advected by the flow, in general follow chaotic trajectories, even though the motion of the autonomous swimmer is completely regular. The flow is mixin g, and for P{e}clet and Batchelor numbers, which are realized e.g. in eucaryotic cells, advective mixing can substantially accelerate and even dominate transport by diffusion.
Active droplets swim as a result of the nonlinear advective coupling of the distribution of chemical species they consume or release with the Marangoni flows created by their non-uniform surface distribution. Most existing models focus on the self-pr opulsion of a single droplet in an unbounded fluid, which arises when diffusion is slow enough (i.e. beyond a critical Peclet number, $mbox{Pe}_c$). Despite its experimental relevance, the coupled dynamics of multiple droplets and/or collision with a wall remains mostly unexplored. Using a novel approach based on a moving fitted bispherical grid, the fully-coupled nonlinear dynamics of the chemical solute and flow fields are solved here to characterise in detail the axisymmetric collision of an active droplet with a rigid wall (or with a second droplet). The dynamics is strikingly different depending on the convective-to-diffusive transport ratio, $mbox{Pe}$: near the self-propulsion threshold (moderate $mbox{Pe}$), the rebound dynamics are set by chemical interactions and are well captured by asymptotic analysis; in contrast, for larger $mbox{Pe}$, a complex and nonlinear combination of hydrodynamic and chemical effects set the detailed dynamics, including a closer approach to the wall and a velocity plateau shortly after the rebound of the droplet. The rebound characteristics, i.e. minimum distance and duration, are finally fully characterised in terms of $mbox{Pe}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا