ترغب بنشر مسار تعليمي؟ اضغط هنا

The magnetic domain wall motion driven by a magnetic field is studied in (Ga,Mn)As and (Ga,Mn)(As,P) films of different thicknesses. In the thermally activated creep regime, a kink in the velocity curves and a jump of the roughness exponent evidence a dimensional crossover in the domain wall dynamics. The measured values of the roughness exponent zeta_{1d} = 0.62 +/- 0.02 and zeta_{2d} = 0.45 +/- 0.04 are compatible with theoretical predictions for the motion of elastic line (d = 1) and surface (d = 2) in two and three dimensional media, respectively.
Magnetic field-driven domain wall motion in an ultrathin Pt/Co(0.45nm)/Pt ferromagnetic film with perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent dynamical regimes are clearly identified: the creep , the thermally assisted flux flow and the depinning, as well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition, $psi=$0.15, and the Larkin length crossover exponent, $phi=$0.24, fit well with the numerical predictions.
Using multiscaling analysis, we compare the characteristic roughening of ferroelectric domain walls in PZT thin films with numerical simulations of weakly pinned one-dimensional interfaces. Although at length scales up to a length scale greater or eq ual to 5 microns the ferroelectric domain walls behave similarly to the numerical interfaces, showing a simple mono-affine scaling (with a well-defined roughness exponent), we demonstrate more complex scaling at higher length scales, making the walls globally multi-affine (varying roughness exponent at different observation length scales). The dominant contributions to this multi-affine scaling appear to be very localized variations in the disorder potential, possibly related to dislocation defects present in the substrate.
We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave as $V sim T^psi$, wi th $psi$ the thermal rounding exponent. We show that the computed value of the thermal rounding exponent, $psi = 0.15$, is robust and accounts for the different scaling properties of several observables both in the steady-state and in the transient relaxation to the steady-state. In particular, we show the compatibility of the thermal rounding exponent with the scaling properties of the steady-state structure factor, the universal short-time dynamics of the transient velocity at the sample critical force, and the velocity scaling function describing the joint dependence of the steady-state velocity on the external drive and temperature.
We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry reveals the existence of severa l characteristic lengths separating different length-scale regimes of roughness. We determine the scaling behavior of these lengths as a function of the velocity, temperature, driving force, and transverse periodicity. A dynamical roughness diagram is thus obtained which contains, at small length scales, the critical and fast-flow regimes typical of the random-manifold (or domain wall) depinning, and at large length-scales, the critical and fast-flow regimes typical of the random-periodic (or charge-density wave) depinning. From the study of the equilibrium geometry we are also able to infer the roughness diagram in the creep regime, extending the depinning roughness diagram below threshold. Our results are relevant for understanding the geometry at depinning of arrays of elastically coupled thin manifolds in a disordered medium such as driven particle chains or vortex-line planar arrays. They also allow to properly control the effect of transverse periodic boundary conditions in large-scale simulations of driven disordered interfaces.
In this work, we present an effective discrete Edwards-Wilkinson equation aimed to describe the single-file diffusion process. The key physical properties of the system are captured defining an effective elasticity, which is proportional to the singl e particle diffusion coefficient and to the inverse squared mean separation between particles. The effective equation gives a description of single-file diffusion using the global roughness of the system of particles, which presents three characteristic regimes, namely normal diffusion, subdiffusion and saturation, separated by two crossover times. We show how these regimes scale with the parameters of the original system. Additional repulsive interaction terms are also considered and we analyze how the crossover times depend on the intensity of the additional terms. Finally, we show that the roughness distribution can be well characterized by the Edwards-Wilkinson universal form for the different single-file diffusion processes studied here.
The goal of this work is to show that a ferromagnetic-like domain growth process takes place within the backbone of the three-dimensional $pm J$ Edwards-Anderson (EA) spin glass model. To sustain this affirmation we study the heterogeneities displaye d in the out-of-equilibrium dynamics of the model. We show that both correlation function and mean flipping time distribution present features that have a direct relation with spatial heterogeneities, and that they can be characterized by the backbone structure. In order to gain intuition we analyze the pure ferromagnetic Ising model, where we show the presence of dynamical heterogeneities in the mean flipping time distribution that are directly associated to ferromagnetic growing domains. We extend a method devised to detect domain walls in the Ising model to carry out a similar analysis in the three-dimensional EA spin glass model. This allows us to show that there exists a domain growth process within the backbone of this model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا