ﻻ يوجد ملخص باللغة العربية
The magnetic domain wall motion driven by a magnetic field is studied in (Ga,Mn)As and (Ga,Mn)(As,P) films of different thicknesses. In the thermally activated creep regime, a kink in the velocity curves and a jump of the roughness exponent evidence a dimensional crossover in the domain wall dynamics. The measured values of the roughness exponent zeta_{1d} = 0.62 +/- 0.02 and zeta_{2d} = 0.45 +/- 0.04 are compatible with theoretical predictions for the motion of elastic line (d = 1) and surface (d = 2) in two and three dimensional media, respectively.
We analyze the electric current and magnetic field driven domain wall motion in perpendicularly magnetized ultrathin ferromagnetic films in the presence of interfacial Dzyaloshinskii-Moriya interaction and both out-of-plane and in-plane uniaxial anis
We present an analytical theory of domain wall tilt due to a transverse in-plane magnetic field in a ferromagnetic nanostrip with out-of-plane anisotropy and Dzyaloshinskii-Moriya interaction (DMI). The theory treats the domain walls as one-dimension
We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, wi
Atomic force microscopy was used to investigate ferroelectric switching and nanoscale domain dynamics in epitaxial PbZr0.2Ti0.8O3 thin films. Measurements of the writing time dependence of domain size reveal a two-step process in which nucleation is
Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughe