ﻻ يوجد ملخص باللغة العربية
We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry reveals the existence of several characteristic lengths separating different length-scale regimes of roughness. We determine the scaling behavior of these lengths as a function of the velocity, temperature, driving force, and transverse periodicity. A dynamical roughness diagram is thus obtained which contains, at small length scales, the critical and fast-flow regimes typical of the random-manifold (or domain wall) depinning, and at large length-scales, the critical and fast-flow regimes typical of the random-periodic (or charge-density wave) depinning. From the study of the equilibrium geometry we are also able to infer the roughness diagram in the creep regime, extending the depinning roughness diagram below threshold. Our results are relevant for understanding the geometry at depinning of arrays of elastically coupled thin manifolds in a disordered medium such as driven particle chains or vortex-line planar arrays. They also allow to properly control the effect of transverse periodic boundary conditions in large-scale simulations of driven disordered interfaces.
The thermal rounding of the depinning transition of an elastic interface sliding on a washboard potential is studied through analytic arguments and very accurate numerical simulations. We confirm the standard view that well below the depinning thresh
We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave as $V sim T^psi$, wi
We study relaxation dynamics of a three dimensional elastic manifold in random potential from a uniform initial condition by numerically solving the Langevin equation.We observe growth of roughness of the system up to larger wavelengths with time.We
By extending the Kac-Rice approach to manifolds of finite internal dimension, we show that the mean number $leftlanglemathcal{N}_mathrm{tot}rightrangle$ of all possible equilibria (i.e. force-free configurations, a.k.a. equilibrium points) of an elas
We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several typ