ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-table text-to-SQL aims to transform a natural language question into a SQL query according to one single table. Recent work has made promising progress on this task by pre-trained language models and a multi-submodule framework. However, zero- shot table, that is, the invisible table in the training set, is currently the most critical bottleneck restricting the application of existing approaches to real-world scenarios. Although some work has utilized auxiliary tasks to help handle zero-shot tables, expensive extra manual annotation limits their practicality. In this paper, we propose a new approach for the zero-shot text-to-SQL task which does not rely on any additional manual annotations. Our approach consists of two parts. First, we propose a new model that leverages the abundant information of table content to help establish the mapping between questions and zero-shot tables. Further, we propose a simple but efficient meta-learning strategy to train our model. The strategy utilizes the two-step gradient update to force the model to learn a generalization ability towards zero-shot tables. We conduct extensive experiments on a public open-domain text-to-SQL dataset WikiSQL and a domain-specific dataset ESQL. Compared to existing approaches using the same pre-trained model, our approach achieves significant improvements on both datasets. Compared to the larger pre-trained model and the tabular-specific pre-trained model, our approach is still competitive. More importantly, on the zero-shot subsets of both the datasets, our approach further increases the improvements.
Formal query building is an important part of complex question answering over knowledge bases. It aims to build correct executable queries for questions. Recent methods try to rank candidate queries generated by a state-transition strategy. However, this candidate generation strategy ignores the structure of queries, resulting in a considerable number of noisy queries. In this paper, we propose a new formal query building approach that consists of two stages. In the first stage, we predict the query structure of the question and leverage the structure to constrain the generation of the candidate queries. We propose a novel graph generation framework to handle the structure prediction task and design an encoder-decoder model to predict the argument of the predetermined operation in each generative step. In the second stage, we follow the previous methods to rank the candidate queries. The experimental results show that our formal query building approach outperforms existing methods on complex questions while staying competitive on simple questions.
101 - Rui Chen , Ning Li , Zhi-Feng Sun 2021
We perform a systematic exploration of the possible doubly charmed molecular pentaquarks composed of $Sigma_c^{(*)}D^{(*)}$ with the one-boson-exchange potential model. After taking into account the $S-D$ wave mixing and the coupled channel effects, we predict several possible doubly charmed molecular pentaquarks, which include the $Sigma_cD$ with $I(J^P) = 1/2(1/2^-)$, $Sigma_c^*D$ with $1/2(3/2^-)$, and $Sigma_cD^*$ with $1/2(1/2^-)$, $1/2(3/2^-)$. The $Sigma_cD$ state with $3/2(1/2^-)$ and $Sigma_cD^*$ state with $3/2(1/2^-)$ may also be suggested as candidates of doubly charmed molecular pentaquarks. The $Sigma_cD$ and $Sigma_c^*D$ states can be searched for by analyzing the $Lambda_cDpi$ invariant mass spectrum of the bottom baryon and $B$ meson decays. The $Sigma_cD^*$ states can be searched for in the invariant mass spectrum of $Lambda_cD^*pi$, $Lambda_cDpipi$ and $Lambda_cDpigamma$. Since the width of $Sigma_c^*$ is much larger than that of $D^*$, $Sigma_c^*Drightarrow Lambda_cDpi$ will be the dominant decay mode. We sincerely hope these candidates for the doubly charmed molecular pentaqurks will be searched by LHCb or BelleII collaboration in the near future.
We show that entangled measurements provide an exponential advantage in sample complexity for Pauli channel estimation, which is both a fundamental problem and a practically important subroutine for benchmarking near-term quantum devices. The specifi c task we consider is to learn the eigenvalues of an $n$-qubit Pauli channel to precision $varepsilon$ in $l_infty$ distance. We give an estimation protocol with an $n$-qubit ancilla that succeeds with high probability using only $O(n/varepsilon^{2})$ copies of the Pauli channel, while prove that any ancilla-free protocol (possibly with adaptive control and channel concatenation) would need at least $Omega(2^{n/3})$ rounds of measurement. We further study the advantages provided by a small number of ancillas. For the case that a $k$-qubit ancilla ($kle n$) is available, we obtain a sample complexity lower bound of $Omega(2^{(n-k)/3})$ for any non-concatenating protcol, and a stronger lower bound of $Omega(n2^{n-k})$ for any non-adaptive, non-concatenating protocol. The latter is shown to be tight by explicitly constructing a $k$-qubit-ancilla-assisted estimation protocol. We also show how to apply the ancilla-assisted estimation protocol to a practical quantum benchmarking task in a noise-resilient and sample-efficient manner, given reasonable noise assumptions. Our results provide a practically-interesting example for quantum advantages in property learning and also bring new insight for quantum benchmarking.
94 - Tan Peng , Chun-Bo Hua , Rui Chen 2021
The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In t his work, we investigate the effects of disorder on two types of second-order topological insulators, including a quasicrystalline quadrupole insulator and a modified quantum spin Hall insulator, in a two-dimensional Amman-Beenker tiling quasicrystalline lattice. We demonstrate that the higher-order topological insulators are robust against weak disorder in both two models. More striking, the disorder-induced higher-order topological insulators called higher-order topological Anderson insulators are found at a certain region of disorder strength in both two models. Our work extends the study of the interplay between disorder and higher-order topology to quasicrystalline systems.
The interior resonance problem of time domain integral equations (TDIEs) formulated to analyze acoustic field interactions on penetrable objects is investigated. Two types of TDIEs are considered: The first equation, which is termed the time domain p otential integral equation (TDPIE) (in unknowns velocity potential and its normal derivative), suffers from the interior resonance problem, i.e., its solution is replete with spurious modes that are excited at the resonance frequencies of the acoustic cavity in the shape of the scatterer. Numerical experiments demonstrate that, unlike the frequency-domain integral equations, the amplitude of these modes in the time domain could be suppressed to a level that does not significantly affect the solution. The second equation is obtained by linearly combining TDPIE with its normal derivative. Weights of the combination are carefully selected to enable the numerical computation of the singular integrals. The solution of this equation, which is termed the time domain combined potential integral equation (TDCPIE), does not involve any spurious interior resonance modes.
184 - Furui Cheng , Dongyu Liu , Fan Du 2021
Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical pr actice. Directly using existing explainable ML techniques in clinical settings can be challenging. Through literature surveys and collaborations with six clinicians with an average of 17 years of clinical experience, we identified three key challenges, including clinicians unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence. Following an iterative design process, we further designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML explanations into clinicians decision-making workflow. The system includes a novel hierarchical display of contribution-based feature explanations and enriched interactions that connect the dots between ML features, explanations, and data. We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians, showing that visually associating model explanations with patients situational records can help clinicians better interpret and use model predictions when making clinician decisions. We further derived a list of design implications for developing future explainable ML tools to support clinical decision-making.
104 - Rui Chen , Qi Huang , Xiang Liu 2021
The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spec trum, which lies just below the $D^0D^{*+}$ threshold around 273 keV. In this work, we study the $D^0D^{*+}/D^+D^{*0}$ interactions with the one-boson-exchange effective potentials and consider the isospin breaking effect carefully. We not only reproduce the mass of the newly observed $T_{cc}^+$ very well in the doubly charmed molecular tetraquark scenario, but also predict the other doubly charmed partner resonance $T_{cc}^{prime+}$ with $m=3876~text{MeV}$, and $Gamma= 412~text{keV}$. The prime decay modes of the $T_{cc}^{prime+}$ are $D^0D^+gamma$ and $D^+D^0pi^0$.
Scientists frequently generalize population level causal quantities such as average treatment effect from a source population to a target population. When the causal effects are heterogeneous, differences in subject characteristics between the source and target populations may make such a generalization difficult and unreliable. Reweighting or regression can be used to adjust for such differences when generalizing. However, these methods typically suffer from large variance if there is limited covariate distribution overlap between the two populations. We propose a generalizability score to address this issue. The score can be used as a yardstick to select target subpopulations for generalization. A simplified version of the score avoids using any outcome information and thus can prevent deliberate biases associated with inadvertent access to such information. Both simulation studies and real data analysis demonstrate convincing results for such selection.
Recently, higher-order topological matter and 3D quantum Hall effects have attracted great attention. The Fermi-arc mechanism of the 3D quantum Hall effect proposed in Weyl semimetals is characterized by the one-sided hinge states, which do not exist in all the previous quantum Hall systems and more importantly pose a realistic example of the higher-order topological matter. The experimental effort so far is in the Dirac semimetal Cd$_3$As$_2$, where however time-reversal symmetry leads to hinge states on both sides of the top/bottom surfaces, instead of the aspired one-sided hinge states. We propose that under a tilted magnetic field, the hinge states in Cd$_3$As$_2$-like Dirac semimetals can be one-sided, highly tunable by field direction and Fermi energy, and robust against weak disorder. Furthermore, we propose a scanning tunneling Hall measurement to detect the one-sided hinge states. Our results will be insightful for exploring not only the quantum Hall effects beyond two dimensions, but also other higher-order topological insulators in the future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا