ﻻ يوجد ملخص باللغة العربية
The interior resonance problem of time domain integral equations (TDIEs) formulated to analyze acoustic field interactions on penetrable objects is investigated. Two types of TDIEs are considered: The first equation, which is termed the time domain potential integral equation (TDPIE) (in unknowns velocity potential and its normal derivative), suffers from the interior resonance problem, i.e., its solution is replete with spurious modes that are excited at the resonance frequencies of the acoustic cavity in the shape of the scatterer. Numerical experiments demonstrate that, unlike the frequency-domain integral equations, the amplitude of these modes in the time domain could be suppressed to a level that does not significantly affect the solution. The second equation is obtained by linearly combining TDPIE with its normal derivative. Weights of the combination are carefully selected to enable the numerical computation of the singular integrals. The solution of this equation, which is termed the time domain combined potential integral equation (TDCPIE), does not involve any spurious interior resonance modes.
A robust field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that appear in the Stratton-Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of the electric f
A lesser-known but powerful application of parabolic equation methods is to the target scattering problem. In this paper, we use noncanonically shaped objects to establish the limits of applicability of the traditional approach, and introduce wide-an
In a recent paper, Klaseboer et al. (IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 972-977, Feb. 2017) developed a surface integral formulation of electromagnetics that does not require working with integral equations that have singular kernels.
The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. Thi
Higher-order accurate solution to electromagnetic scattering problems are obtained at reduced computational cost in a {it p}-variable finite volume time domain method. Spatial operators of lower, including first-order accuracy, are employed locally i