ترغب بنشر مسار تعليمي؟ اضغط هنا

Formal Query Building with Query Structure Prediction for Complex Question Answering over Knowledge Base

148   0   0.0 ( 0 )
 نشر من قبل Yongrui Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Formal query building is an important part of complex question answering over knowledge bases. It aims to build correct executable queries for questions. Recent methods try to rank candidate queries generated by a state-transition strategy. However, this candidate generation strategy ignores the structure of queries, resulting in a considerable number of noisy queries. In this paper, we propose a new formal query building approach that consists of two stages. In the first stage, we predict the query structure of the question and leverage the structure to constrain the generation of the candidate queries. We propose a novel graph generation framework to handle the structure prediction task and design an encoder-decoder model to predict the argument of the predetermined operation in each generative step. In the second stage, we follow the previous methods to rank the candidate queries. The experimental results show that our formal query building approach outperforms existing methods on complex questions while staying competitive on simple questions.



قيم البحث

اقرأ أيضاً

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Early studies mainly focused on answering simple questions over KBs and achieved great success. However, their performance on complex questions is still fa r from satisfactory. Therefore, in recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions. In this survey, we review recent advances on KBQA with the focus on solving complex questions, which usually contain multiple subjects, express compound relations, or involve numerical operations. In detail, we begin with introducing the complex KBQA task and relevant background. Then, we describe benchmark datasets for complex KBQA task and introduce the construction process of these datasets. Next, we present two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. Specifically, we illustrate their procedures with flow designs and discuss their major differences and similarities. After that, we summarize the challenges that these two categories of methods encounter when answering complex questions, and explicate advanced solutions and techniques used in existing work. Finally, we conclude and discuss several promising directions related to complex KBQA for future research.
Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical chall enges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.
Knowledge base question answering (KBQA)is an important task in Natural Language Processing. Existing approaches face significant challenges including complex question understanding, necessity for reasoning, and lack of large end-to-end training data sets. In this work, we propose Neuro-Symbolic Question Answering (NSQA), a modular KBQA system, that leverages (1) Abstract Meaning Representation (AMR) parses for task-independent question understanding; (2) a simple yet effective graph transformation approach to convert AMR parses into candidate logical queries that are aligned to the KB; (3) a pipeline-based approach which integrates multiple, reusable modules that are trained specifically for their individual tasks (semantic parser, entity andrelationship linkers, and neuro-symbolic reasoner) and do not require end-to-end training data. NSQA achieves state-of-the-art performance on two prominent KBQA datasets based on DBpedia (QALD-9 and LC-QuAD1.0). Furthermore, our analysis emphasizes that AMR is a powerful tool for KBQA systems.
Recent studies on Knowledge Base Question Answering (KBQA) have shown great progress on this task via better question understanding. Previous works for encoding questions mainly focus on the word sequences, but seldom consider the information from sy ntactic trees.In this paper, we propose an approach to learn syntax-based representations for KBQA. First, we encode path-based syntax by considering the shortest dependency paths between keywords. Then, we propose two encoding strategies to mode the information of whole syntactic trees to obtain tree-based syntax. Finally, we combine both path-based and tree-based syntax representations for KBQA. We conduct extensive experiments on a widely used benchmark dataset and the experimental results show that our syntax-aware systems can make full use of syntax information in different settings and achieve state-of-the-art performance of KBQA.
127 - Jian Wang , Junhao Liu , Wei Bi 2019
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers questi on representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا