ﻻ يوجد ملخص باللغة العربية
Scientists frequently generalize population level causal quantities such as average treatment effect from a source population to a target population. When the causal effects are heterogeneous, differences in subject characteristics between the source and target populations may make such a generalization difficult and unreliable. Reweighting or regression can be used to adjust for such differences when generalizing. However, these methods typically suffer from large variance if there is limited covariate distribution overlap between the two populations. We propose a generalizability score to address this issue. The score can be used as a yardstick to select target subpopulations for generalization. A simplified version of the score avoids using any outcome information and thus can prevent deliberate biases associated with inadvertent access to such information. Both simulation studies and real data analysis demonstrate convincing results for such selection.
In this paper, we propose a propensity score adapted variable selection procedure to select covariates for inclusion in propensity score models, in order to eliminate confounding bias and improve statistical efficiency in observational studies. Our v
Understanding how treatment effects vary on individual characteristics is critical in the contexts of personalized medicine, personalized advertising and policy design. When the characteristics are of practical interest are only a subset of full cova
Causal effect estimation from observational data is an important but challenging problem. Causal effect estimation with unobserved variables in data is even more difficult. The challenges lie in (1) whether the causal effect can be estimated from obs
While a randomized controlled trial (RCT) readily measures the average treatment effect (ATE), this measure may need to be generalized to the target population to account for a sampling bias in the RCTs population. Identifying this target population
Missing data and confounding are two problems researchers face in observational studies for comparative effectiveness. Williamson et al. (2012) recently proposed a unified approach to handle both issues concurrently using a multiply-robust (MR) metho