ترغب بنشر مسار تعليمي؟ اضغط هنا

We have derived high-spatial-resolution metallicity maps covering $sim$105~deg$^2$ across the Large Magellanic Cloud (LMC) using near-infrared passbands from the VISTA Survey of the Magellanic Clouds. We attempt to understand the metallicity distribu tion and gradients of the LMC up to a radius of $sim$ 6~kpc. We identify red giant branch (RGB) stars in spatially distinct $Y, (Y-K_{rm s})$ colour-magnitude diagrams. In any of our selected subregions, the RGB slope is used as an indicator of the average metallicity, based on calibration to metallicity using spectroscopic data. The mean LMC metallicity is [Fe/H] = $-$0.42~dex ($sigma$[Fe/H] = 0.04~dex). We find the bar to be mildly metal-rich compared with the outer disc, showing evidence of a shallow gradient in metallicity ($-0.008 pm 0.001$ dex kpc$^{-1}$) from the galaxys centre to a radius of 6~kpc. Our results suggest that the LMCs stellar bar is chemically similar to the bars found in large spiral galaxies. The LMCs radial metallicity gradient is asymmetric. It is metal-poor and flatter towards the southwest, in the direction of the Bridge. This hints at mixing and/or distortion of the spatial metallicity distribution, presumably caused by tidal interactions between the Magellanic Clouds.
Although governments across Europe had realised the need to incentivise the development of practically viable longitude solutions as early as the late-sixteenth century, the English government was late to the party. An sense of urgency among the scie ntific community and maritime navigators led to the establishment of a number of longitude awards by private donors. The first private British award was bequeathed in 1691 by Thomas Axe, parish clerk of Ottery St. Mary (Devon). Despite the absence of an expenses component and the onerous and costly nature of its terms and conditions, the Axe prize attracted a number of optimistic claimants. Although the award was never disbursed, it may have contributed to the instigation of the government-supported monetary reward associated with the British Longitude Act of 1714. It is likely that the conditions governing the British Longitude Prize, specifically the required accuracy and the need for sea trials and of disclosure of a successful methods theoretical principles, can be traced back at least in part to the Axe Prize requirements.
Despite frequent references in modern reviews to a seventeenth-century Venetian longitude prize, only a single, circumstantial reference to the alleged prize is known from contemporary sources. Edward Harrisons scathing assessment of the conditions g overning the award of an alleged Venetian longitude prize simultaneously disparages the rewards offered by the Dutch States General. However, the latter had long run its course by 1696, the year of the citation, thus rendering Harrisons reference unreliable. Whereas other longitude awards offered by the leading European maritime nations attracted applicants from far and wide, often accompanied by extensive, self-published pamphlets, the alleged Venetian prize does not seem to have been subject to similar hype. The alleged existence of seventeenth-century Venetian award is particularly curious, because the citys fortune was clearly in decline, and longitude determination on the open seas does not appear to have been a priority; the citys mariners already had access to excellent portolan charts. It is therefore recommended that authors refrain from referring to a potentially phantom Venetian longitude prize in the same context as the major sixteenth- to eighteenth-century European awards offered by the dominant sea-faring nations.
The conventional picture of coeval, chemically homogeneous, populous star clusters -- known as `simple stellar populations (SSPs) -- is a view of the past. Photometric and spectroscopic studies reveal that almost all ancient globular clusters in the Milky Way and our neighbouring galaxies exhibit star-to-star light-element abundance variations, typically known as multiple populations (MPs). Here, we analyse photometric $it Hubble$ $it Space$ $it Telescope$ observations of three young ($<$2 Gyr-old) Large and Small Magellanic Cloud clusters, NGC 411, NGC 1718 and NGC 2213. We measure the widths of their red-giant branches (RGBs). For NGC 411, we also use a pseudo-colour--magnitude diagram (pseudo-CMD) to assess its RGB for evidence of MPs. We compare the morphologies of the clusters RGBs with artificially generated SSPs. We conclude that their RGBs do not show evidence of significant broadening beyond intrinsic photometric scatter, suggesting an absence of significant chemical abundance variations in our sample clusters. Specifically, for NGC 411, NGC 1718 and NGC 2213 we derive maximum helium-abundance variations of delta_Y=0.003$pm$0.001 Y=0.300), 0.002$pm$0.001 (Y=0.350) and 0.004$pm$0.002 (Y=0.300), respectively. We determined an upper limit to the NGC 411 nitrogen-abundance variation of $Delta$[N/Fe] = 0.3 dex; the available data for our other clusters do not allow us to determine useful upper limits. It thus appears that the transition from SSPs to MPs occurs at an age of ~2 Gyr, implying that age might play an important role in this transition. This raises the question as to whether this is indeed a fundamental minimum-age limit for the formation of MPs.
The color-magnitude diagrams (CMDs) of young star clusters show that, particularly at ultraviolet wavelengths, their upper main sequences (MSs) bifurcate into a sequence comprising the bulk population and a blue periphery. The spatial distribution of stars is crucial to understand the reasons for these distinct stellar populations. This study uses high-resolution photometric data obtained with the Hubble Space Telescope to study the spatial distributions of the stellar populations in seven Magellanic Cloud star clusters. The cumulative radial number fractions of blue stars within four clusters are strongly anti-correlated with those of the high-mass-ratio binaries in the bifurcated region, with negative Pearson coefficients < -0.7. Those clusters generally are young or in an early dynamical evolutionary stage. In addition, a supporting N-body simulation suggests the increasing percentage of blue-MS stars from the cluster centers to their outskirts may be associated with the dissolution of soft binaries. This study provides a different perspective to explore the MS bimodalities in young clusters and adds extra puzzles. A more comprehensive study combined with detailed simulations is needed in the future.
The impact of stellar rotation on the morphology of star cluster colour-magnitude diagrams is widely acknowledged. However, the physics driving the distribution of the equatorial rotation velocities of main-sequence turn-off (MSTO) stars is as yet po orly understood. Using Gaia Data Release 2 photometry and new Southern African Large Telescope medium-resolution spectroscopy, we analyse the intermediate-age ($sim1,$Gyr-old) Galactic open clusters NGC 3960, NGC 6134 and IC 4756 and develop a novel method to derive their stellar rotation distributions based on SYCLIST stellar rotation models. Combined with literature data for the open clusters NGC 5822 and NGC 2818, we find a tight correlation between the number ratio of slow rotators and the clusters binary fractions. The blue-main-sequence stars in at least two of our clusters are more centrally concentrated than their red-main-sequence counterparts. The origin of the equatorial stellar rotation distribution and its evolution remains as yet unidentified. However, the observed correlation in our open cluster sample suggests a binary-driven formation mechanism.
We present a catalog of eclipsing binaries in the northern Galactic Plane from the Kiso Wide-Field Camera Intensive Survey of the Galactic Plane (KISOGP). We visually identified 7055 eclipsing binaries spread across $sim$330 square degrees, including 4197 W Ursa Majoris/EW-, 1458 $beta$ Lyrae/EB-, and 1400 Algol/EA-type eclipsing binaries. For all systems, $I$-band light curves were used to obtain accurate system parameters. We derived the distances and extinction values for the EW-type objects from their period--luminosity relation. We also obtained the structure of the thin disk from the distribution of our sample of eclipsing binary systems, combined with those of high-mass star-forming regions and Cepheid tracers. We found that the thin disk is inhomogeneous in number density as a function of Galactic longitude. Using this new set of distance tracers, we constrain the detailed structure of the thin disk. Finally, we report a global parallax zero-point offset of $ Delta pi=-42.1pm1.9mbox{(stat.)}pm12.9mbox{(syst.)}$ $mu$as between our carefully calibrated EW-type eclipsing binary positions and those provided by Gaia Early Data Release 3. Implementation of the officially recommended parallax zero-point correction results in a significantly reduced offset. Additionally, we provide a photometric characterization of our EW-type eclipsing binaries that can be applied to further analyses.
We present new near-infrared, $JHK_s$, Period--Luminosity relations (PLRs) for RR Lyrae variables in the Messier 53 (M53 or NGC 5024) globular cluster. Multi-epoch $JHK_s$ observations, obtained with the WIRCam instrument on the 3.6-m Canada France H awaii Telescope, are used for the first time to estimate precise mean-magnitudes for 63 RR Lyrae stars in M53 including 29 fundamental-mode (RRab) and 34 first-overtone modes (RRc) variables. The $JHK_s$-band PLRs for RR Lyrae stars are best constrained for RRab types with a minimal scatter of 22, 23, and 19 mmag, respectively. The combined sample of RR Lyrae is used to derive the $K_s$-band PLR, $K_s = -2.303 (0.063) log P + 15.212 (0.016)$ exhibiting a $1sigma$ dispersion of only $0.027$ mag. Theoretical Period--Luminosity--Metallicity (PLZ) relations are used to predict parallaxes for 400 Galactic RR Lyrae resulting in a median parallax zero-point offset of $-7pm3~mu$as in {it Gaia} Early Data Release 3 (EDR3), which increases to $22pm2~mu$as if the parallax corrections are applied. We also estimate a robust distance modulus, $mu_textrm{M53} = 16.403 pm 0.024$ (statistical) $pm 0.033$ (systematic) mag, to M53 based on theoretical calibrations. Homogeneous and precise mean-magnitudes for RR Lyrae in M53 together with similar literature data for M3, M4, M5, and $omega$ Cen are used to empirically calibrate a new RR Lyrae PLZ$_{K_s}$ relation, $K_s = -0.848 (0.007) -2.320 (0.006) log P + 0.166 (0.011) {rm[Fe/H]}$, anchored with {it Gaia} EDR3 distances and theoretically predicted relations, and simultaneously estimate precise RR Lyrae based distances to these globular clusters.
We present new near-infrared ($JHK_s$) time-series observations of RR Lyrae variables in the Messier 3 (NGC 5272) globular cluster using the WIRCam instrument at the 3.6-m Canada France Hawaii Telescope. Our observations cover a sky area of $sim 21ti mes 21$ around the cluster center and provide an average of twenty epochs of homogeneous $JHK_s$-band photometry. New homogeneous photometry is used to estimate robust mean magnitudes for 175 fundamental-mode (RRab), 47 overtone-mode (RRc), and 11 mixed-mode (RRd) variables. Our sample of 233 RR Lyrae variables is the largest thus far obtained in a single cluster with time-resolved, multi-band near-infrared photometry. Near-infrared to optical amplitude ratios for RR Lyrae in Messier 3 exhibit a systematic increase moving from RRc to short-period ($P < 0.6$~days) and long-period ($P gtrsim 0.6$~days) RRab variables. We derive $JHK_s$-band Period--Luminosity relations for RRab, RRc, and the combined sample of variables. Absolute calibrations based on the theoretically predicted Period--Luminosity--Metallicity relations for RR Lyrae stars yield a distance modulus, $mu = 15.041 pm 0.017~(textrm{statistical}) pm 0.036~(textrm{systematic})$~mag, to Messier 3. When anchored to trigonometric parallaxes for nearby RR Lyrae stars from the {it Hubble Space Telescope} and the {it Gaia} mission, our distance estimates are consistent with those resulting from the theoretical calibrations, albeit with relatively larger systematic uncertainties.
We have derived high spatial resolution metallicity maps covering $sim$42 deg$^2$ across the Small Magellanic Cloud (SMC) in an attempt to understand its metallicity distribution and gradients up to a radius of $sim$ 4$^{circ}$. Using the near-infrar ed VISTA Survey of the Magellanic Clouds, our data cover a thrice larger area compared with previous studies. We identify red giant branch (RGB) stars in spatially distinct $Y, (Y-K_{rm s})$ colour--magnitude diagrams. In any of our selected subregions, the RGB slope is used as an indicator of the average metallicity, based on calibration to metallicity using spectroscopic data. The metallicity distribution across the SMC is unimodal and can be fitted by a Gaussian distribution with a peak at [Fe/H] = $-$0.97 dex ($sigma$[Fe/H] = 0.05 dex). We find evidence of a shallow gradient in metallicity ($-0.031 pm 0.005$ dex deg$^{-1}$) from the galactic centre to radii of 2$^{circ}$--2.5$^{circ}$, followed by a flat metallicity trend from $sim$ 3.5$^{circ}$ to 4$^{circ}$. We find that the SMCs metallicity gradient is radially asymmetric. It is flatter towards the East than to the West, hinting at mixing and/or distortion of the spatial metallicity distribution (within the inner 3$^{circ}$), presumably caused by tidal interactions between the Magellanic Clouds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا