ﻻ يوجد ملخص باللغة العربية
The conventional picture of coeval, chemically homogeneous, populous star clusters -- known as `simple stellar populations (SSPs) -- is a view of the past. Photometric and spectroscopic studies reveal that almost all ancient globular clusters in the Milky Way and our neighbouring galaxies exhibit star-to-star light-element abundance variations, typically known as multiple populations (MPs). Here, we analyse photometric $it Hubble$ $it Space$ $it Telescope$ observations of three young ($<$2 Gyr-old) Large and Small Magellanic Cloud clusters, NGC 411, NGC 1718 and NGC 2213. We measure the widths of their red-giant branches (RGBs). For NGC 411, we also use a pseudo-colour--magnitude diagram (pseudo-CMD) to assess its RGB for evidence of MPs. We compare the morphologies of the clusters RGBs with artificially generated SSPs. We conclude that their RGBs do not show evidence of significant broadening beyond intrinsic photometric scatter, suggesting an absence of significant chemical abundance variations in our sample clusters. Specifically, for NGC 411, NGC 1718 and NGC 2213 we derive maximum helium-abundance variations of delta_Y=0.003$pm$0.001 Y=0.300), 0.002$pm$0.001 (Y=0.350) and 0.004$pm$0.002 (Y=0.300), respectively. We determined an upper limit to the NGC 411 nitrogen-abundance variation of $Delta$[N/Fe] = 0.3 dex; the available data for our other clusters do not allow us to determine useful upper limits. It thus appears that the transition from SSPs to MPs occurs at an age of ~2 Gyr, implying that age might play an important role in this transition. This raises the question as to whether this is indeed a fundamental minimum-age limit for the formation of MPs.
Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC~1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NG
The nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula). To investigate the role of these clusters in
Spectroscopic observations of 32 HII regions in the spiral galaxy NGC 3963 and the barred irregular galaxy NGC 7292 were carried out with the 2.5-m telescope of the Caucasus Mountain Observatory of the Sternberg Astronomical Institute using the Trans
The azimuthal variation of the HII region oxygen abundance in spiral galaxies is a key observable for understanding how quickly oxygen produced by massive stars can be dispersed within the surrounding interstellar medium. Observational constraints on
We present new abundance measurements for eleven GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and WLM galaxies. The abundances were determined f