ترغب بنشر مسار تعليمي؟ اضغط هنا

RR Lyrae variables in Messier 53: Near-infrared Period--Luminosity relations and the calibration using Gaia Early Data Release 3

150   0   0.0 ( 0 )
 نشر من قبل Anupam Bhardwaj
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new near-infrared, $JHK_s$, Period--Luminosity relations (PLRs) for RR Lyrae variables in the Messier 53 (M53 or NGC 5024) globular cluster. Multi-epoch $JHK_s$ observations, obtained with the WIRCam instrument on the 3.6-m Canada France Hawaii Telescope, are used for the first time to estimate precise mean-magnitudes for 63 RR Lyrae stars in M53 including 29 fundamental-mode (RRab) and 34 first-overtone modes (RRc) variables. The $JHK_s$-band PLRs for RR Lyrae stars are best constrained for RRab types with a minimal scatter of 22, 23, and 19 mmag, respectively. The combined sample of RR Lyrae is used to derive the $K_s$-band PLR, $K_s = -2.303 (0.063) log P + 15.212 (0.016)$ exhibiting a $1sigma$ dispersion of only $0.027$ mag. Theoretical Period--Luminosity--Metallicity (PLZ) relations are used to predict parallaxes for 400 Galactic RR Lyrae resulting in a median parallax zero-point offset of $-7pm3~mu$as in {it Gaia} Early Data Release 3 (EDR3), which increases to $22pm2~mu$as if the parallax corrections are applied. We also estimate a robust distance modulus, $mu_textrm{M53} = 16.403 pm 0.024$ (statistical) $pm 0.033$ (systematic) mag, to M53 based on theoretical calibrations. Homogeneous and precise mean-magnitudes for RR Lyrae in M53 together with similar literature data for M3, M4, M5, and $omega$ Cen are used to empirically calibrate a new RR Lyrae PLZ$_{K_s}$ relation, $K_s = -0.848 (0.007) -2.320 (0.006) log P + 0.166 (0.011) {rm[Fe/H]}$, anchored with {it Gaia} EDR3 distances and theoretically predicted relations, and simultaneously estimate precise RR Lyrae based distances to these globular clusters.

قيم البحث

اقرأ أيضاً

We present new near-infrared ($JHK_s$) time-series observations of RR Lyrae variables in the Messier 3 (NGC 5272) globular cluster using the WIRCam instrument at the 3.6-m Canada France Hawaii Telescope. Our observations cover a sky area of $sim 21ti mes 21$ around the cluster center and provide an average of twenty epochs of homogeneous $JHK_s$-band photometry. New homogeneous photometry is used to estimate robust mean magnitudes for 175 fundamental-mode (RRab), 47 overtone-mode (RRc), and 11 mixed-mode (RRd) variables. Our sample of 233 RR Lyrae variables is the largest thus far obtained in a single cluster with time-resolved, multi-band near-infrared photometry. Near-infrared to optical amplitude ratios for RR Lyrae in Messier 3 exhibit a systematic increase moving from RRc to short-period ($P < 0.6$~days) and long-period ($P gtrsim 0.6$~days) RRab variables. We derive $JHK_s$-band Period--Luminosity relations for RRab, RRc, and the combined sample of variables. Absolute calibrations based on the theoretically predicted Period--Luminosity--Metallicity relations for RR Lyrae stars yield a distance modulus, $mu = 15.041 pm 0.017~(textrm{statistical}) pm 0.036~(textrm{systematic})$~mag, to Messier 3. When anchored to trigonometric parallaxes for nearby RR Lyrae stars from the {it Hubble Space Telescope} and the {it Gaia} mission, our distance estimates are consistent with those resulting from the theoretical calibrations, albeit with relatively larger systematic uncertainties.
We analysed 30 RR Lyrae stars (RRLs) located in the Large Magellanic Cloud (LMC) globular cluster Reticulum that were observed in the 3.6 and 4.5 $mu$m passbands with the Infrared Array Camera (IRAC) on board of the Spitzer Space Telescope. We derive d new mid-infrared (MIR) period-luminosity PL relations. The zero points of the PL relations were estimated using the trigonometric parallaxes of five bright Milky Way (MW) RRLs measured with the Hubble Space Telescope (HST) and, as an alternative, we used the trigonometric parallaxes published in the first Gaia data release (DR1) which were obtained as part of the Tycho-Gaia Astrometric Solution (TGAS) and the parallaxes of the same stars released with the second Gaia data release (DR2). We determined the distance to Reticulum using our new MIR PL relations and found that distances calibrated on the TGAS and DR2 parallaxes are in a good agreement and, generally, smaller than distances based on the HST parallaxes, although they are still consistent within the respective errors. We conclude that Reticulum is located ~3 kpc closer to us than the barycentre of the LMC.
We present results of the analysis of 70 RR Lyrae stars located in the bar of the Large Magellanic Cloud (LMC). Combining spectroscopically determined metallicity of these stars from the literature with precise periods from the OGLE III catalogue and multi-epoch $K_{rm s}$ photometry from the VISTA survey of the Magellanic Clouds system (VMC), we derive a new near-infrared period-luminosity-metallicity (${rm PL_{K_{rm s}}Z}$) relation for RR Lyrae variables. In order to fit the relation we use a fitting method developed specifically for this study. The zero-point of the relation is estimated in two different ways: by assuming the value of the distance to the LMC and by using Hubble Space Telescope (HST) parallaxes of five RR Lyrae stars in the Milky Way (MW). The difference in distance moduli derived by applying these two approaches is $sim0.2$ mag. To investigate this point further we derive the ${rm PL_{K_{rm s}}Z}$ relation based on 23 MW RR Lyrae stars which had been analysed in Baade-Wesselink studies. We compared the derived ${rm PL_{K_{rm s}}Z}$ relations for RR Lyrae stars in the MW and LMC. Slopes and zero-points are different, but still consistent within the errors. The shallow slope of the metallicity term is confirmed by both LMC and MW variables. The astrometric space mission Gaia is expected to provide a huge contribution to the determination of the RR Lyrae ${rm PL_{K_{rm s}}Z}$ relation, however, calculating an absolute magnitude from the trigonometric parallax of each star and fitting a ${rm PL_{K_{rm s}}Z}$ relation directly to period and absolute magnitude leads to biased results. We present a tool to achieve an unbiased solution by modelling the data and inferring the slope and zero-point of the relation via statistical methods.
Messier 15 (NGC 7078) is an old and metal-poor post core-collapse globular cluster which hosts a rich population of variable stars. We report new optical ($gi$) and near-infrared (NIR, $JK_s$) multi-epoch observations for 129 RR Lyrae, 4 Population I I Cepheids (3 BL Herculis, 1 W Virginis), and 1 anomalous Cepheid variable candidate in M15 obtained using the MegaCam and the WIRCam instruments on the 3.6-m Canada-France-Hawaii Telescope. Multi-band data are used to improve the periods and classification of variable stars, and determine accurate mean magnitudes and pulsational amplitudes from the light curves fitted with optical and NIR templates. We derive optical and NIR period-luminosity relations for RR Lyrae stars which are best constrained in the $K_s$-band, $m_{K_s} = -2.333~(0.054) log P + 13.948~(0.015)$ with a scatter of only $0.037$ mag. Theoretical and empirical calibrations of RR Lyrae period-luminosity-metallicity relations are used to derive a true distance modulus to M15: $15.196~pm~0.026$~(statistical)~$pm~ 0.039$~(systematic) mag. Our precise distance moduli based on RR Lyrae stars and Population II Cepheid variables are mutually consistent and agree with recent distance measurements in the literature based on {it Gaia} parallaxes and other independent methods.
We present results from the analysis of 401 RR Lyrae stars (RRLs) belonging to the field of the Milky Way (MW). For a fraction of them multi-band ($V$, $K_{rm s}$, $W1$) photometry, metal abundances, extinction values and pulsation periods are availa ble in the literature and accurate trigonometric parallaxes measured by the Gaia mission alongside Gaia $G$-band time-series photometry have become available with the Gaia second data release (DR2) on 2018 April 25. Using a Bayesian fitting approach we derive new near-, mid-infrared period-absolute magnitude-metallicity ($PMZ$) relations and new absolute magnitude-metallicity relations in the visual ($M_V - {rm [Fe/H]}$) and $G$ bands ($M_G - {rm [Fe/H]}$), based on the Gaia DR2 parallaxes. We find the dependence of luminosity on metallicity to be higher than usually found in the literature, irrespective of the passband considered. Running the adopted Bayesian model on a simulated dataset we show that the high metallicity dependence is not caused by the method, but likely arises from the actual distribution of the data and the presence of a zero-point offset in the Gaia parallaxes. We infer a zero-point offset of $-0.057$ mas, with the Gaia DR2 parallaxes being systematically smaller. We find the RR Lyrae absolute magnitude in the $V$, $G$, $K_{rm s}$ and $W1$ bands at metallicity of [Fe/H]=$-1.5$ dex and period of P = 0.5238 days, based on Gaia DR2 parallaxes to be $M_V = 0.66pm0.06$ mag, $M_G = 0.63pm0.08$ mag, $M_{K_{rm s}} = -0.37pm0.11$ mag and $M_{W1} = -0.41pm0.11$ mag, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا