ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary-driven stellar rotation evolution at the main-sequence turn-off in star clusters

101   0   0.0 ( 0 )
 نشر من قبل Weijia Sun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The impact of stellar rotation on the morphology of star cluster colour-magnitude diagrams is widely acknowledged. However, the physics driving the distribution of the equatorial rotation velocities of main-sequence turn-off (MSTO) stars is as yet poorly understood. Using Gaia Data Release 2 photometry and new Southern African Large Telescope medium-resolution spectroscopy, we analyse the intermediate-age ($sim1,$Gyr-old) Galactic open clusters NGC 3960, NGC 6134 and IC 4756 and develop a novel method to derive their stellar rotation distributions based on SYCLIST stellar rotation models. Combined with literature data for the open clusters NGC 5822 and NGC 2818, we find a tight correlation between the number ratio of slow rotators and the clusters binary fractions. The blue-main-sequence stars in at least two of our clusters are more centrally concentrated than their red-main-sequence counterparts. The origin of the equatorial stellar rotation distribution and its evolution remains as yet unidentified. However, the observed correlation in our open cluster sample suggests a binary-driven formation mechanism.

قيم البحث

اقرأ أيضاً

Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey to study the evolution of the Galaxy, and it is vital to derive accurate stellar parameters. In this work, we select 150 MSTO star candidates from the MSTO stars sample of Xiang that have asteroseismic parameters and determine accurate stellar parameters for these stars combing the asteroseismic parameters deduced from the Kepler photometry and atmospheric parameters deduced from the LAMOST spectra.With this sample, we examine the age deter- mination as well as the contamination rate of the MSTO stars sample. A comparison of age between this work and Xiang shows a mean difference of 0.53 Gyr (7%) and a dispersion of 2.71 Gyr (28%). The results show that 79 of the candidates are MSTO stars, while the others are contaminations from either main sequence or sub-giant stars. The contamination rate for the oldest stars is much higher than that for the younger stars. The main cause for the high contamination rate is found to be the relatively large systematic bias in the LAMOST surface gravity estimates.
Extended main-sequence turn-offs (eMSTO) are a commonly observed property of young clusters. A global theoretical interpretation for the eMSTOs is still lacking, but stellar rotation is considered a necessary ingredient to explain the eMSTO. We aim t o assess the importance of core-boundary and envelope mixing in stellar interiors for the interpretation of eMSTOs in terms of one coeval population. We construct isochrone-clouds based on interior mixing profiles of stars with a convective core calibrated from asteroseismology of isolated galactic field stars. We fit these isochrone-clouds to the measured eMSTO to estimate the age and core mass of the stars in the two young clusters NGC 1850 and NGC 884, assuming one coeval population and fixing the metallicity to the one measured from spectroscopy. We assess the correlations between the interior mixing properties of the cluster members and their rotational and pulsation properties. We find that stellar models based on asteroseismically-calibrated interior mixing profiles lead to enhanced core masses of eMSTO stars and can explain a good fraction of the observed eMSTOs of the two considered clusters in terms of one coeval population of stars, with similar ages to those in the literature, given the large uncertainties. The rotational and pulsation properties of the stars in NGC 884 are not sufficiently well known to perform asteroseismic modelling, as it is achieved for field stars from space photometry. The stars in NGC 884 for which we have vsini and a few pulsation frequencies show no correlation between these properties and the core masses of the stars that set the cluster age. Future cluster space asteroseismology may allow to interpret the values of the core masses in terms of the physical processes that cause them, based on the modelling of the interior mixing profiles for the individual member stars with suitable identified modes.
141 - Matteo Correnti 2016
We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (~ 100 Myr) star cluster NGC1850 in the Large Magellanic Cloud. We analyze the cluster colour-magnitude diagram (CMD) and find t hat it hosts an extended main sequence turn-off (MSTO) and a double MS. We demonstrate that these features cannot be due to photometric errors, field star contamination, or differential reddening. From a comparison with theoretical models and Monte Carlo simulations, we show that a coeval stellar population featuring a distribution of stellar rotation rates can reproduce the MS split quite well. However, it cannot reproduce the observed MSTO region, which is significantly wider than the simulated ones. Exploiting narrow-band Halpha imaging, we find that the MSTO hosts a population of Halpha-emitting stars which are interpreted as rapidly rotating Be-type stars. We explore the possibility that the discrepancy between the observed MSTO morphology and that of the simulated simple stellar population (SSP) is caused by the fraction of these objects that are highly reddened, but we rule out this hypothesis. We demonstrate that the global CMD morphology is well-reproduced by a combination of SSPs that cover an age range of ~ 35 Myr as well as a wide variety of rotation rates. We derive the cluster mass and escape velocity and use dynamical evolution models to predict their evolution starting at an age of 10 Myr. We discuss these results and their implications in the context of the extended MSTO phenomenon.
Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of thes e clusters is much broader than would be expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently with two different theoretical isochrone models. We find that in most of the cases, the age spreads inferred from the red clumps are smaller than the ones resulting from the turn-off region. However, the age ranges resulting from the red clump region are broader than would be expected for a single age. Only two out of 12 clusters in our sample show a red clump which seems to be consistent with a single age. As our results are not unambiguous, we can not ultimately tell if the extended main sequence turn-off feature is due to an age spread, or not, by fitting the star formation histories to the red clump regions. However, we find that the width of the extended main sequence turn-off feature is correlated with the age of the clusters in a way which would be unexplained in the age spread interpretation, but which may be expected if stellar rotation is the cause of the spread at the turn-off.
We use the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) to obtain deep, high resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass ($approx$ $10^4$ $M_{odot}$) and signific antly different core radii, namely NGC2209 and NGC2249. For comparison purposes, we also re-analyzed archival HST images of NGC1795 and IC2146, two other relatively low mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main sequence turnoff (MSTO) regions in NGC2209 and NGC2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC1795 and IC2146 are not. We determine the evolution of the clusters masses and escape velocities from an age of 10 Myr to the present age. We find that the differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC2209 and IC2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC2249 and NGC1795). Under this assumption, we find that NGC2209 and NGC2249 have estimated escape velocities $V_{rm esc}$ $geq$ 15 km s$^{-1}$ at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have $V_{rm esc}$ $leq$ 12 km s$^{-1}$ at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا