ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate gluon and ghost propagators in Yang-Mills theory in linear covariant gauges. To that end, we utilize Nielsen identities with Landau gauge propagators and vertices as the starting point. We present and discuss numerical results for the gl uon and ghost propagators for values of the gauge parameter $0<xi le 5$. Extrapolating the propagators to $xi to infty $ we find the expected qualitative behavior. We provide arguments that our results are quantitatively reliable at least for values $xilesssim 1/2$ of the gauge fixing parameter. It is shown that the correlation functions, and in particular the ghost propagator, change significantly with increasing gauge parameter. In turn, the ghost-gluon running coupling as well as the position of the zero crossing of the Schwinger function of the gluon propagator remain within the uncertainties of our calculation unchanged.
We explore a simple parameterization of new physics that results in an ultraviolet complete gauge-quark sector of the Standard Model. Specifically, we add an antiscreening contribution to the beta functions of the gauge couplings and a flavor-indepen dent, antiscreening contribution to the beta functions of the Yukawa couplings. These two free parameters give rise to an intricate web of Renormalization Group fixed points. Their predictive power extends to the flavor structure and mixing patterns, which we investigate to demonstrate that some of the free parameters of the Standard Model could be determined by the Renormalization Group flow.
We derive general properties of the scale-dependent effective spectral dimensions of non-perturbative gauge boson propagators as they appear as solutions from different methods in Yang-Mills theories. In the ultraviolet and for short time scales the anomalous dimensions of the propagators lead to a slight decrease of the spectral dimension as compared to the one of a free propagator. Lowering the momentum scale, the spectral dimension decreases further. The class of propagators which display a maximum at Euclidean momenta, and thus violate positivity, always approaches a spectral dimension of one for large times. We also show that the longest time intervals are not related to the deep infrared but to the momentum scale defined by the position of the maximum.
We discuss an approach for accessing bound state properties, like mass and decay width, of a theory within the functional renormalisation group approach. An important cornerstone is the dynamical hadronization technique for resonant interaction chann els. The general framework is exemplified and put to work within the two-flavour quark-meson model. This model provides a low-energy description of the dynamics of two-flavour QCD with quark and hadronic degrees of freedom. We compare explicitly the respective results for correlation functions and observables with first principle QCD results in a quantitative manner. This allows us to estimate the validity range of low energy effective models. We also present first results for pole masses and decay widths. Next steps involving real-time formulations of the functional renormalisation group are discussed.
The spectrum of light bound states in an SU(2) gauge theory with two flavors of fundamentally charged fermions is investigated by solving the Bethe-Salpeter equations in the respective channels within a 3PI-type (i.e., beyond rainbow-ladder) truncati on including self-consistently a correspondingly truncated fermion--gauge-boson vertex. Remarkable differences with respect to the meson spectrum of an SU(3) gauge theory are found although in our approach these are not as pronounced as indicated by some recent respective investigations within lattice gauge field theory.
The covariant Faddeev approach which describes baryons as relativistic three-quark bound states and is based on the Dyson-Schwinger and Bethe-Salpeter equations of QCD is briefly reviewed. All elements, including especially the baryons three-body-wav e-functions, the quark propagators and the dressed quark-photon vertex, are calculated from a well-established approximation for the quark-gluon interaction. Selected previous results of this approach for the spectrum and elastic electromagnetic form factors of ground-state baryons and resonances are reported. The main focus of this talk is a presentation and discussion of results from a recent investigation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only $Sigma^0$ to $Lambda$ transition.
We present results from a calculation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only $Sigma^0$ to $Lambda$ transition. We work in the combined framework of Dyson-Schwinger equa tions and covariant Bethe-Salpeter equations with all elements, the baryon three body wave function, the quark propagators and the dressed quark-photon vertex determined from a well-established, momentum dependent approximation for the quark-gluon interaction. We discuss in particular the similarities among the different transitions as well as the differences induced by SU(3)-isospin symmetry breaking. We furthermore provide estimates for the slopes of the electric and magnetic $Sigma^0$ to $Lambda$ transitions at the zero photon momentum point.
Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (``unquenching) change the three-gluon vertex via the quark-triangle diagrams which the mselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the three-gluon vertex the unquenching effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.
We discuss unquenching of the three-gluon vertex via its Dyson-Schwinger equation. We review the role of Furrys theorem and present first results for the quark triangle diagrams using non-perturbatively calculated dressing functions for the quark propagator and the quark-gluon vertex.
We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employ ing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا