ﻻ يوجد ملخص باللغة العربية
Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (``unquenching) change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the three-gluon vertex the unquenching effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.
Greens functions are a central element in the attempt to understand non-perturbative phenomena in Yang-Mills theory. Besides the propagators, 3-point Greens functions play a significant role, since they permit access to the running coupling constant
The canonical recursive Dyson--Schwinger equations for the three-gluon and ghost-gluon vertices are solved numerically. The employed truncation includes several previously neglected diagrams and includes back-coupling effects. We find an infrared fin
This is a pedagogical review on the integrability-based approach to the three-point function in N=4 supersymmetric Yang-Mills theory. We first discuss the computation of the structure constant at weak coupling and show that the result can be recast a
We introduce a nonperturbative approach to correlation functions of two determinant operators and one non-protected single-trace operator in planar N=4 supersymmetric Yang-Mills theory. Based on the gauge/string duality, we propose that they correspo
The finite-temperature behavior of gluon and of Faddeev-Popov-ghost propagators is investigated for pure SU(2) Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice simulations and Dyson-Schwinger equations. Po