ﻻ يوجد ملخص باللغة العربية
We discuss an approach for accessing bound state properties, like mass and decay width, of a theory within the functional renormalisation group approach. An important cornerstone is the dynamical hadronization technique for resonant interaction channels. The general framework is exemplified and put to work within the two-flavour quark-meson model. This model provides a low-energy description of the dynamics of two-flavour QCD with quark and hadronic degrees of freedom. We compare explicitly the respective results for correlation functions and observables with first principle QCD results in a quantitative manner. This allows us to estimate the validity range of low energy effective models. We also present first results for pole masses and decay widths. Next steps involving real-time formulations of the functional renormalisation group are discussed.
We use the functional renormalisation group to study the spectrum of three- and four-body states in bosonic systems around the unitary limit. Our effective action includes all energy-independent contact interactions in the four-atom sector and we int
We apply a functional renormalisation group to systems of four bosonic atoms close to the unitary limit. We work with a local effective action that includes a dynamical trimer field and we use this field to eliminate structures that do not correspond
We present results for in-medium spectral functions obtained within the Functional Renormalization Group framework. The analytic continuation from imaginary to real time is performed in a well-defined way on the level of the flow equations. Based on
We present the initial release of ARGES, a toolkit for obtaining renormalisation group equations in perturbation theory. As such, ARGES can handle any perturbatively renormalisable four-dimensional quantum field theory. Notable further features inclu
We consider the calculation of threshold effects due to Kaluza Klein and winding modes in string theory. We show that for a large radius of compactification these effects may be approximated by an effective field theory applicable below the string cu