ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - E. Ochsner 2014
Precessing black hole-neutron star (BH-NS) binaries produce a rich gravitational wave signal, encoding the binarys nature and inspiral kinematics. Using the lalinference_mcmc Markov-chain Monte Carlo parameter estimation code, we use two fiducial exa mples to illustrate how the geometry and kinematics are encoded into the modulated gravitational wave signal, using coordinates well-adapted to precession. Even for precessing binaries, we show the performance of detailed parameter estimation can be estimated by effective estimates: comparisons of a prototype signal with its nearest neighbors, adopting a fixed sky location and idealized two-detector network. We use detailed and effective approaches to show higher harmonics provide nonzero but small local improvement when estimating the parameters of precessing BH-NS binaries. That said, we show higher harmonics can improve parameter estimation accuracy for precessing binaries ruling out approximately-degenerate source orientations. Our work illustrates quantities gravitational wave measurements can provide, such as reliable component masses and the precise orientation of a precessing short gamma ray burst progenitor relative to the line of sight. Effective estimates may provide a simple way to estimate trends in the performance of parameter estimation for generic precessing BH-NS binaries in next-generation detectors. For example, our results suggest that the orbital chirp rate, precession rate, and precession geometry are roughly-independent observables, defining natural variables to organize correlations in the high-dimensional BH-NS binary parameter space.
92 - R. OShaughnessy 2013
Using the texttt{lalinference} Markov-chain Monte Carlo parameter estimation code, we examine two distinct nonprecessing black hole-neutron star (BH-NS) binaries with and without higher-order harmonics. Our simulations suggest that higher harmonics p rovide a minimal amount of additional information, principally about source geometry. Higher harmonics do provide disproportionately more information than expected from the signal power. Our results compare favorably to the effective Fisher matrix approach. Extrapolating using analytic scalings, we expect higher harmonics will provide little new information about nonprecessing BH-NS binaries at the signal amplitudes expected for the first few detections. Any study of subdominant degrees of freedom in gravitational wave astronomy can adopt the tools presented here ($V/V_{rm prior}$ and $D_{KL}$) to assess whether new physics is accessible (e.g., modifications of gravity; spin-orbit misalignment) and if so precisely what information those new parameters provide. For astrophysicists, we provide a concrete illustration of how well parameters of a BH-NS binary can be measured, relevant to the astrophysical interpretation of coincident EM and GW events (e.g., short GRBs). For our fiducial initial-detector example, the individual masses can be determined to lie between $7.11-11.48 M_odot$ and $1.77-1.276M_odot$ at greater than 99% confidence, accounting for unknown BH spin. Assuming comparable control over waveform systematics, future measurements of BH-NS binaries can constrain the BH and perhaps NS mass distributions.
In coming years, gravitational wave detectors should find black hole-neutron star binaries, potentially coincident with astronomical phenomena like short GRBs. These binaries are expected to precess. Gravitational wave science requires a tractable mo del for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations (e.g., a Fisher matrix) with easily-interpreted results. We have verified that for generic BH-NS binaries, our model agress with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here [and provided in full online] allow higher accuracy and error estimates.
67 - R. OShaughnessy 2012
The short gravitational wave signal from the merger of compact binaries encodes a surprising amount of information about the strong-field dynamics of merger into frequencies accessible to ground-based interferometers. In this paper we describe a prev iously-unknown precession of the peak emission direction with time, both before and after the merger, about the total angular momentum direction. We demonstrate the gravitational wave polarization encodes the orientation of this direction to the line of sight. We argue the effects of polarization can be estimated nonparametrically, directly from the gravitational wave signal as seen along one line of sight, as a slowly-varying feature on top of a rapidly-varying carrier. After merger, our results can be interpreted as a coherent excitation of quasinormal modes of different angular orders, a superposition which naturally precesses and modulates the line-of-sight amplitude. Recent analytic calculations have arrived at a similar geometric interpretation. We suspect the line-of-sight polarization content will be a convenient observable with which to define new high-precision tests of general relativity using gravitational waves. Additionally, as the nonlinear merger process seeds the initial coherent perturbation, we speculate the amplitude of this effect provides a new probe of the strong-field dynamics during merger. To demonstrate the ubiquity of the effects we describe, we summarize the post-merger evolution of 104 generic precessing binary mergers. Finally, we provide estimates for the detectable impacts of precession on the waveforms from high-mass sources. These expressions may identify new precessing binary parameters whose waveforms are dissimilar from the existing sample.
Within the next decade, ground based gravitational wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. We argue that the stellar models are sensitive to heterogeneities (in age and metallicity at least) in such a way that the predicted merger rates are subject to an additional 30-50% systematic errors unless these heterogeneities are taken into account. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g., binary masses and spins), as few as the $simeq 5$ merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can constrain merger rates without introducing a systematic error of order $O(30%)$ at 90% confidence. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions -- even assuming no uncertainty in binary evolution model -- that the emph{distribution} of star forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. (Abridged)
112 - R. OShaughnessy 2012
Being able to measure each mergers sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with th ird-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference.
68 - R. OShaughnessy 2012
The gravitational wave signature emitted from a merging binary depends on the orientation of an observer relative to the binary. Previous studies suggest that emission along the total initial or total final angular momenta leads to both the strongest and simplest signal from a precessing compact binary. In this paper we describe a concrete counterexample: a binary with $m_1/m_2=4$, $a_1=0.6 hat{x} = -a_2$, placed in orbit in the x,y plane. We extract the gravitational wave emission along several proposed emission directions, including the initial (Newtonian) orbital angular momentum; the final (~ initial) total angular momentum; and the dominant principal axis of $<L_a L_b>_M$. Using several diagnostics, we show that the suggested preferred directions are not representative. For example, only for a handful of other directions (< 15%) will the gravitational wave signal have comparable shape to the one extracted along each of these fiducial directions, as measured by a generalized overlap (>0.95). We conclude that the information available in just one direction (or mode) does not adequately encode the complexity of orientation-dependent emission for even short signals from merging black hole binaries. Future investigations of precessing, unequal-mass binaries should carefully explore and model their orientation-dependent emission.
172 - R. OShaughnessy 2011
Previous studies have demonstrated that gravitational radiation reliably encodes information about the natural emission direction of the source (e.g., the orbital plane). In this paper, we demonstrate that these orientations can be efficiently estima ted by the principal axes of <L_a L_b>, an average of the action of rotation group generators on the Weyl tensor at asymptotic infinity. Evaluating this average at each time provides the instantaneous emission direction. Further averaging across the entire signal yields an average orientation, closely connected to the angular components of the Fisher matrix. The latter direction is well-suited to data analysis and parameter estimation when the instantaneous emission direction evolves significantly. Finally, in the time domain, the average <L_a L_b> provides fast, invariant diagnostics of waveform quality.
77 - R. OShaughnessy 2011
In the last few years before merger, supermassive black hole binaries will rapidly inspiral and precess in a magnetic field imposed by a surrounding circumbinary disk. Multiple simulations suggest this relative motion will convert some of the local e nergy to a Poynting-dominated outflow, with a luminosity 10^{43} erg/s * (B/10^4 G)^2(M/10^8 Msun)^2 (v/0.4 c)^2, some of which may emerge as synchrotron emission at frequencies near 1 GHz where current and planned wide-field radio surveys will operate. On top of a secular increase in power on the gravitational wave inspiral timescale, orbital motion will produce significant, detectable modulations, both on orbital periods and (if black hole spins are not aligned with the binarys total angular momenta) spin-orbit precession timescales. Because the gravitational wave merger time increases rapidly with separation, we find vast numbers of these transients are ubiquitously predicted, unless explicitly ruled out (by low efficiency $epsilon$) or obscured (by accretion geometry f_{geo}). If the fraction of Poynting flux converted to radio emission times the fraction of lines of sight accessible $f_{geo}$ is sufficiently large (f_{geo} epsilon > 2times 10^{-4} for a 1 year orbital period), at least one event is accessible to future blind surveys at a nominal 10^4 {deg}^2 with 0.5 mJy sensitivity. Our procedure generalizes to other flux-limited surveys designed to investigate EM signatures associated with many modulations produced by merging SMBH binaries.
We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4times 10^{-3} {Mpc}^{-3}{Myr}^{-1} for binary black holes (BH), 3times 10^{-2} {Mpc}^{-3}{Myr}^{-1} for binary neutron stars (NS), and 10^{-2} {Mpc}^{-3}{Myr}^{-1} for BH-NS binaries. Mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are dominated by the contribution from spiral galaxies. Using only models that reproduce current observations of Galactic NS-NS binaries, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (as part of a network), corresponding to radii Cv of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M_sun neutron stars of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9* 10^{-2} -- 0.46 and 25-400 per year (at 90% confidence level), respectively. We also find that the probability P_{detect} of detecting one or more mergers with this single detector can be approximated by (i) P_{detect}simeq 0.4+0.5log (T/0.01{yr}), assuming Cv=197 {Mpc} and it operates for T years, for T between 2 days and 0.1 {yr}); or by (ii) P_{detect}simeq 0.5 + 1.5 log Cv/32{Mpc}, for one year of operation and for $Cv$ between 20 and 70 Mpc. [ABRIDGED]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا