ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are ind icative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5$f$ electrons and the heavy actinides that have localized 5$f$ electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantum Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal, which must also include the interactions between Pu 5$f$ electrons on different Pu atoms. For the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. Furthermore, we show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu 5$f$-ligand hybridization at the surface.
An understanding of the phase diagram of elemental plutonium (Pu) must include both the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. We present for the first time electronic-structure calculations of the full 16-atom per unit cell alpha-phase structure within the framework of density functional theory (DFT) together with dynamical mean-field theory (DMFT). Our calculations demonstrate that Pu atoms sitting on different sites within the alpha-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, alpha-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material.
We report on the importance of GW self-energy corrections for the electronic structure of light actinides in the weak-to-intermediate coupling regime. Our study is based on calculations of the band structure and total density of states of Np, U, and Pu using a one-shot GW approximation that includes spin-orbit coupling within a full potential LAPW framework. We also present RPA screened effective Coulomb interactions for the f-electron orbitals for different lattice constants, and show that there is an increased contribution from electron-electron correlation in these systems for expanded lattices. We find a significant amount of electronic correlation in these highly localized electronic systems.
An electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly found a universal scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only on the local density approximation bandwidth and is otherwise independent of crystal structure and lattice constant.
The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local density approximation band-structure Hamiltonian. The Hubbard term is then solved either at the mean-field le vel or with sophisticated many-body techniques such as dynamical mean field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations are inconsistent with what the calculations actually do. Although many of these calculations are often treated as essentially first-principles calculations, in fact, we argue that they should be viewed from an entirely different point of view, viz., as phenomenological many-body corrections to band-structure theory. Alternatively, they may also be considered to be just a more complex Hubbard model than the simple one- or few-band models traditionally used in many-body theories of solids.
We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent $GW$ method (qsgw). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-cente red cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the $delta$ phase to 90 % of the equivalent for the $alpha$ phase of Pu. The self-consistent $GW$ quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the $f$ orbitals. We show that correlation effects narrow the $f$ bands in two significantly different ways. Besides the expected narrowing of individual $f$ bands (flatter dispersion), we find that an even more significant effect on the $f$ bands is a decrease in the crystal-field splitting of the different bands.
We have developed a new efficient and accurate impurity solver for the single impurity Anderson model (SIAM), which is based on a non-perturbative recursion technique in a space of operators and involves expanding the self-energy as a continued fract ion. The method has no special occupation number or temperature restrictions; the only approximation is the number of levels of the continued fraction retained in the expansion. We also show how this approach can be used as a new approach to Dynamical Mean Field Theory (DMTF) and illustrate this with the Hubbard model. The three lowest orders of recursion give the Hartree-Fock, Hubbard I, and Hubbard III approximations. A higher level of recursion is able to reproduce the expected 3-peak structure in the spectral function and Fermi liquid behavior.
168 - M. D. Jones , R. C. Albers 2008
We extend a tight-binding method to include the effects of spin-orbit coupling, and apply it to the study of the electronic properties of the actinide elements Th, U, and Pu. These tight-binding parameters are determined for the fcc crystal structure using the equivalent equilibrium volumes. In terms of the single particle energies and the electronic density of states, the overall quality of the tight-binding representation is excellent and of the same quality as without spin-orbit coupling. The values of the optimized tight-binding spin-orbit coupling parameters are comparable to those determined from purely atomic calculations.
We present results for the electronic structure of alpha uranium using a recently developed quasiparticle self-consistent GW method (QSGW). This is the first time that the f-orbital electron-electron interactions in an actinide has been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) to the local density approximation (LDA). We show that the QSGW approximation predicts an f-level shift upwards of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy is not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا