ﻻ يوجد ملخص باللغة العربية
The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local density approximation band-structure Hamiltonian. The Hubbard term is then solved either at the mean-field level or with sophisticated many-body techniques such as dynamical mean field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations are inconsistent with what the calculations actually do. Although many of these calculations are often treated as essentially first-principles calculations, in fact, we argue that they should be viewed from an entirely different point of view, viz., as phenomenological many-body corrections to band-structure theory. Alternatively, they may also be considered to be just a more complex Hubbard model than the simple one- or few-band models traditionally used in many-body theories of solids.
The repulsive fermionic Hubbard model is a typical model describing correlated electronic systems. Although it is a simple model with only a kinetic term and a local interaction term, their competition generates rich phases. When the interaction part
Two-dimensional Hubbard model is very important in condensed matter physics. However it has not been resolved though it has been proposed for more than 50 years. We give several methods to construct eigenstates of the model that are independent of the on-site interaction strength $U$.
The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the `standard model of condensed matter physics. The model has been remarkably successful
We study the flat-band ferromagnetic phase of a topological Hubbard model within a bosonization formalism and, in particular, determine the spin-wave excitation spectrum. We consider a square lattice Hubbard model at 1/4-filling whose free-electron t
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes fr