ﻻ يوجد ملخص باللغة العربية
We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent $GW$ method (qsgw). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the $delta$ phase to 90 % of the equivalent for the $alpha$ phase of Pu. The self-consistent $GW$ quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the $f$ orbitals. We show that correlation effects narrow the $f$ bands in two significantly different ways. Besides the expected narrowing of individual $f$ bands (flatter dispersion), we find that an even more significant effect on the $f$ bands is a decrease in the crystal-field splitting of the different bands.
The electronic structure of the honeycomb lattice iridates Na2IrO3 and Li2IrO3 has been investigated using resonant inelastic x-ray scattering (RIXS). Crystal-field split d-d excitations are resolved in the high-resolution RIXS spectra. In particular
In this work, we study crystalline electric field effects in the heavy fermion superconductor CeIrIn5. We observe two regions of broad magnetic response in the inelastic neutron scattering spectra at 10 K. The first corresponds to the transition betw
An understanding of the phase diagram of elemental plutonium (Pu) must include both the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong
Understanding the crystal field splitting and orbital polarization in non-centrosymmetric systems such as ferroelectric materials is fundamentally important. In this study, taking BaTiO$_3$ (BTO) as a representative material we investigate titanium c
We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are