ترغب بنشر مسار تعليمي؟ اضغط هنا

We present in this work a simple Quantum Well (QW) structure consisting of GaAs wells with AlGaAs barriers as a probe for measuring the performance of arsine purifiers within a MetalOrganic Vapour Phase Epitaxy system. Comparisons between two differe nt commercially available purifiers are based on the analysis of low temperature photoluminescence emission spectra from thick QWs, grown on GaAs substrates misoriented slightly from (100). Neutral excitons emitted from these structures show extremely narrow linewidths, comparable to those which can be obtained by Molecular Beam Epitaxy in an ultra-high vacuum environment, suggesting that purifications well below the 1ppb level are needed to achieve high quality quantum well growth.
Graphene is one of the stiffest known materials, with a Youngs modulus of 1 TPa, making it an ideal candidate for use as a reinforcement in high-performance composites. However, being a one-atom thick crystalline material, graphene poses several fund amental questions: (1) can decades of research on carbon-based composites be applied to such an ultimately-thin crystalline material? (2) is continuum mechanics used traditionally with composites still valid at the atomic level? (3) how does the matrix interact with the graphene crystals and what kind of theoretical description is appropriate? We have demonstrated unambiguously that stress transfer takes place from the polymer matrix to monolayer graphene, showing that the graphene acts as a reinforcing phase. We have also modeled the behavior using shear-lag theory, showing that graphene monolayer nanocomposites can be analyzed using continuum mechanics. Additionally, we have been able to monitor stress transfer efficiency and breakdown of the graphene/polymer interface.
We report on the optical properties of a newly developed site-controlled InGaAs Dots in GaAs barriers grown in pre-patterned pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be extremely narrow, with a standard deviation of 1.19 meV. A dramatic improvement in the spectral purity of emission lines from individual dots is also reported (18-30 ueV) when compared to the state-of-the-art for site controlled quantum dots.
In this paper we report on the optical properties of site controlled InGaAs dots with GaAs barriers grown in pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be unusually narrow, with a standard deviation of 1.19 meV, and spectral purity of emission lines from individual dots is found to be very high (18-30 ueV), in contrast with other site-controlled systems.
Here we demonstrate, for the first time, violation of Bells inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to r eject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.
We demonstrate optical interferometry beyond the limits imposed by the photon wavelength using triggered entangled photon pairs from a semiconductor quantum dot. Interference fringes of the entangled biphoton state reveals a periodicity half of that obtained with the single photon, and much less than that of the pump laser. High fringe visibility indicates that biphoton interference is less sensitive to decoherence than interference of two sequential single photons. The results suggest that quantum interferometry may be possible using a semiconductor LED-like device.
Correlation between the rectilinear polarisations of the photons emitted from the biexciton decay in a single quantum dot is investigated in a device which allows the charge-state of the dot to be controlled. Optimising emission from the neutral exci ton states maximises the operating efficiency of the biexciton decay. This is important for single dot applications such as a triggered source of entangled photons. As the bias on the device is reduced correlation between the two photons is found to fall dramatically as emission from the negatively charged exciton becomes significant. Lifetime measurements demonstrate that electronic spin-scattering is the likely cause.
The demonstration of degeneracy of the exciton spin states is an important step towards the production of entangled photons pairs from the biexciton cascade. We measure the fine structure of exciton and biexciton states for a large number of single I nAs quantum dots in a GaAs matrix; the energetic splitting of the horizontally and vertically polarised components of the exciton doublet is shown to decrease as the exciton confinement decreases, crucially passing through zero and changing sign. Thermal annealing is shown to reduce the exciton confinement, thereby increasing the number of dots with splitting close to zero.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا