ﻻ يوجد ملخص باللغة العربية
We present in this work a simple Quantum Well (QW) structure consisting of GaAs wells with AlGaAs barriers as a probe for measuring the performance of arsine purifiers within a MetalOrganic Vapour Phase Epitaxy system. Comparisons between two different commercially available purifiers are based on the analysis of low temperature photoluminescence emission spectra from thick QWs, grown on GaAs substrates misoriented slightly from (100). Neutral excitons emitted from these structures show extremely narrow linewidths, comparable to those which can be obtained by Molecular Beam Epitaxy in an ultra-high vacuum environment, suggesting that purifications well below the 1ppb level are needed to achieve high quality quantum well growth.
The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas has been studied by picosecond pump-probe Kerr rotation with an in-plane magnetic field. For resonant optical excitation of the positively charged exciton the
Slow magnetooscilations of the conductivity are observed in a 75 nm wide quantum well at heating of the two-dimensional electrons by a high-intensity surface acoustic wave. These magnetooscillations are caused by intersubband elastic scattering betwe
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right
We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs-core-shell-nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consis
The Zeeman splitting and the underlying value of the g-factor for conduction band electrons in GaAs/Al_xGa_{1-x}As quantum wells have been measured by spin-beat spectroscopy based on a time-resolved Kerr rotation technique. The experimental data are