ترغب بنشر مسار تعليمي؟ اضغط هنا

A site-controlled quantum dot system offering both high uniformity and spectral purity

202   0   0.0 ( 0 )
 نشر من قبل Lorenzo Mereni
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we report on the optical properties of site controlled InGaAs dots with GaAs barriers grown in pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be unusually narrow, with a standard deviation of 1.19 meV, and spectral purity of emission lines from individual dots is found to be very high (18-30 ueV), in contrast with other site-controlled systems.



قيم البحث

اقرأ أيضاً

We report on the optical properties of a newly developed site-controlled InGaAs Dots in GaAs barriers grown in pre-patterned pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be extremely narrow, with a standard deviation of 1.19 meV. A dramatic improvement in the spectral purity of emission lines from individual dots is also reported (18-30 ueV) when compared to the state-of-the-art for site controlled quantum dots.
101 - A. Hogele , S. Seidl , M. Kroner 2004
The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange i nteraction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.
We report charge sensing measurements of a silicon metal-oxide-semiconductor quantum dot using a single-electron transistor as a charge sensor with dynamic feedback control. Using digitallycontrolled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge rearrangements. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.
We present studies of thermal entanglement of a three-spin system in triangular symmetry. Spin correlations are described within an effective Heisenberg Hamiltonian, derived from the Hubbard Hamiltonian, with super-exchange couplings modulated by an effective electric field. Additionally a homogenous magnetic field is applied to completely break the degeneracy of the system. We show that entanglement is generated in the subspace of doublet states with different pairwise spin correlations for the ground and excited states. At low temperatures thermal mixing between the doublets with the same spin destroys entanglement, however one can observe its restoration at higher temperatures due to the mixing of the states with an opposite spin orientation or with quadruplets (unentangled states) always destroys entanglement. Pairwise entanglement is quantified using concurrence for which analytical formulae are derived in various thermal mixing scenarios. The electric field plays a specific role -- it breaks the symmetry of the system and changes spin correlations. Rotating the electric field can create maximally entangled qubit pairs together with a separate spin (monogamy) that survives in a relatively wide temperature range providing robust pairwise entanglement generation at elevated temperatures.
A magnetophotoluminescence study of the carrier transfer with hybrid InAs/GaAs quantum dot(QD)-InGaAs quantum well (QW) structures is carried out where we observe an unsual dependence of the photoluminescence (PL) on the GaAs barrier thickness at str ong magnetic field and excitation density. For the case of a thin barrier the QW PL intensity is observed to increase at the expense of a decrease in the QD PL intensity. This is attributed to changes in the interplane carrier dynamics in the QW and the wetting layer (WL) resulting from increasing the magnetic field along with changes in the coupling between QD excited states and exciton states in the QW and the WL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا