ترغب بنشر مسار تعليمي؟ اضغط هنا

Inversion of exciton level splitting in quantum dots

62   0   0.0 ( 0 )
 نشر من قبل Robert Young
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The demonstration of degeneracy of the exciton spin states is an important step towards the production of entangled photons pairs from the biexciton cascade. We measure the fine structure of exciton and biexciton states for a large number of single InAs quantum dots in a GaAs matrix; the energetic splitting of the horizontally and vertically polarised components of the exciton doublet is shown to decrease as the exciton confinement decreases, crucially passing through zero and changing sign. Thermal annealing is shown to reduce the exciton confinement, thereby increasing the number of dots with splitting close to zero.



قيم البحث

اقرأ أيضاً

We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered lig ht spectrum as well as altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong build-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable.
Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy increases with a decrease in the QW width. In the 87-nm QW, the sign change is observed for the excited quantum-confined states, which are above the ground state only by a few meV. A two-step approach for the numerical solution of the two-particle Schroedinger equation, taking into account the Coulomb interaction and valence-band coupling, is used for a theoretical justification of the observed phenomenon. The calculated variation of the g-factor convincingly follows the dependencies obtained in the experiments.
We propose a novel scheme of solid state realization of a quantum computer based on single spin enhancement mode quantum dots as building blocks. In the enhancement quantum dots, just one electron can be brought into initially empty dot, in contrast to depletion mode dots based on expelling of electrons from multi-electron dots by gates. The quantum computer architectures based on depletion dots are confronted by several challenges making scalability difficult. These challenges can be successfully met by the approach based on ehnancement mode, capable of producing square array of dots with versatile functionalities. These functionalities allow transportation of qubits, including teleportation, and error correction based on straightforward one- and two-qubit operations. We describe physical properties and demonstrate experimental characteristics of enhancement quantum dots and single-electron transistors based on InAs/GaSb composite quantum wells. We discuss the materials aspects of quantum dot quantum computing, including the materials with large spin splitting such as InAs, as well as perspectives of enhancement mode approach in materials such as Si.
We demonstrate a one to one correspondence between the polarization state of a light pulse tuned to neutral exciton resonances of single semiconductor quantum dots and the spin state of the exciton that it photogenerates. This is accomplished using t wo variably polarized and independently tuned picosecond laser pulses. The first writes the spin state of the resonantly excited exciton. The second is tuned to biexcitonic resonances, and its absorption is used to read the exciton spin state. The absorption of the second pulse depends on its polarization relative to the exciton spin direction. Changes in the exciton spin result in corresponding changes in the intensity of the photoluminescence from the biexciton lines which we monitor, obtaining thus a one to one mapping between any point on the Poincare sphere of the light polarization to a point on the Bloch sphere of the exciton spin.
A time crystal is a macroscopic quantum system in periodic motion in its ground state, stable only if isolated from energy exchange with the environment. For this reason, coupling separate time crystals is challenging, and time crystals in a dynamic environment have yet not been studied. In our experiments, two coupled time crystals made of spin-wave quasiparticles (magnons) form a macroscopic two-level system. The two levels evolve in time as determined intrinsically by a nonlinear feedback. Magnons move from the ground level to the excited level driven by the Landau-Zener effect, combined with Rabi population oscillations. We thus demonstrate how to arrange spontaneous dynamics between interacting time crystals. Our experiments allow access to every aspect and detail of the interaction in a single run of the experiment, inviting technological exploitation-- potentially even at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا