ترغب بنشر مسار تعليمي؟ اضغط هنا

Traffic flow forecasting is a crucial task in urban computing. The challenge arises as traffic flows often exhibit intrinsic and latent spatio-temporal correlations that cannot be identified by extracting the spatial and temporal patterns of traffic data separately. We argue that such correlations are universal and play a pivotal role in traffic flow. We put forward spacetime interval learning as a paradigm to explicitly capture these correlations through a unified analysis of both spatial and temporal features. Unlike the state-of-the-art methods, which are restricted to a particular road network, we model the universal spatio-temporal correlations that are transferable from cities to cities. To this end, we propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor comprising the data from its neighbors within close time points. Based on this idea, we introduce spacetime neural network (STNN), which employs novel spacetime convolution and attention mechanism to learn the universal spatio-temporal correlations. The proposed STNN captures local traffic patterns, which does not depend on a specific network structure. As a result, a trained STNN model can be applied on any unseen traffic networks. We evaluate the proposed STNN on two public real-world traffic datasets and a simulated dataset on dynamic networks. The experiment results show that STNN not only improves prediction accuracy by 15% over state-of-the-art methods, but is also effective in handling the case when the traffic network undergoes dynamic changes as well as the superior generalization capability.
113 - Xin Chen , Qi Zhao , Xinyang Liu 2021
With the fast development of Deep Learning techniques, Named Entity Recognition (NER) is becoming more and more important in the information extraction task. The greatest difficulty that the NER task faces is to keep the detectability even when types of NE and documents are unfamiliar. Realizing that the specificity information may contain potential meanings of a word and generate semantic-related features for word embedding, we develop a distribution-aware word embedding and implement three different methods to make use of the distribution information in a NER framework. And the result shows that the performance of NER will be improved if the word specificity is incorporated into existing NER methods.
Face image animation from a single image has achieved remarkable progress. However, it remains challenging when only sparse landmarks are available as the driving signal. Given a source face image and a sequence of sparse face landmarks, our goal is to generate a video of the face imitating the motion of landmarks. We develop an efficient and effective method for motion transfer from sparse landmarks to the face image. We then combine global and local motion estimation in a unified model to faithfully transfer the motion. The model can learn to segment the moving foreground from the background and generate not only global motion, such as rotation and translation of the face, but also subtle local motion such as the gaze change. We further improve face landmark detection on videos. With temporally better aligned landmark sequences for training, our method can generate temporally coherent videos with higher visual quality. Experiments suggest we achieve results comparable to the state-of-the-art image driven method on the same identity testing and better results on cross identity testing.
This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with input noise for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT to explicitly correct noisy inputs and delete specific errors simultaneously with the translation decoding process. Secoco is able to achieve significant improvements over strong baselines on two real-world test sets and a benchmark WMT dataset with good interpretability. We will make our code and dataset publicly available soon.
65 - Yangxin Xu , Keyu Li , Ziqi Zhao 2021
Simultaneous Magnetic Actuation and Localization (SMAL) is a promising technology for active wireless capsule endoscopy (WCE). In this paper, an adaptive SMAL system is presented to efficiently propel and precisely locate a capsule in a tubular envir onment with complex shapes. In order to track the capsule with high localization accuracy and update frequency in a large workspace, we propose a mechanism that can automatically activate a sub-array of sensors with the optimal layout during the capsule movement. The improved multiple objects tracking (IMOT) method is simplified and adapted to our system to estimate the 6-D pose of the capsule in real time. Also, we study the locomotion of a magnetically actuated capsule in a tubular environment, and formulate a method to adaptively adjust the pose of the actuator to improve the propulsion efficiency. Our presented methods are applicable to other permanent magnet-based SMAL systems, and help to improve the actuation efficiency of active WCE. We verify the effectiveness of our proposed system in extensive experiments on phantoms and ex-vivo animal organs. The results demonstrate that our system can achieve convincing performance compared with the state-of-the-art ones in terms of actuation efficiency, workspace size, robustness, localization accuracy and update frequency.
64 - Yangxin Xu , Keyu Li , Ziqi Zhao 2021
Active wireless capsule endoscopy (WCE) based on simultaneous magnetic actuation and localization (SMAL) techniques holds great promise for improving diagnostic accuracy, reducing examination time and relieving operator burden. To date, the rotating magnetic actuation methods have been constrained to use a continuously rotating permanent magnet. In this paper, we first propose the reciprocally rotating magnetic actuation (RRMA) approach for active WCE to enhance patient safety. We first show how to generate a desired reciprocally rotating magnetic field for capsule actuation, and provide a theoretical analysis of the potential risk of causing volvulus due to the capsule motion. Then, an RRMA-based SMAL workflow is presented to automatically propel a capsule in an unknown tubular environment. We validate the effectiveness of our method in real-world experiments to automatically propel a robotic capsule in an ex-vivo pig colon. The experiment results show that our approach can achieve efficient and robust propulsion of the capsule with an average moving speed of $2.48 mm/s$ in the pig colon, and demonstrate the potential of using RRMA to enhance patient safety, reduce the inspection time, and improve the clinical acceptance of this technology.
368 - Yankun Xu , Jie Yang , Shiqi Zhao 2021
An accurate seizure prediction system enables early warnings before seizure onset of epileptic patients. It is extremely important for drug-refractory patients. Conventional seizure prediction works usually rely on features extracted from Electroence phalography (EEG) recordings and classification algorithms such as regression or support vector machine (SVM) to locate the short time before seizure onset. However, such methods cannot achieve high-accuracy prediction due to information loss of the hand-crafted features and the limited classification ability of regression and SVM algorithms. We propose an end-to-end deep learning solution using a convolutional neural network (CNN) in this paper. One and two dimensional kernels are adopted in the early- and late-stage convolution and max-pooling layers, respectively. The proposed CNN model is evaluated on Kaggle intracranial and CHB-MIT scalp EEG datasets. Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively. Comparison with state-of-the-art works indicates that the proposed model achieves exceeding prediction performance.
Few-shot semantic segmentation is a challenging task of predicting object categories in pixel-wise with only few annotated samples. However, existing approaches still face two main challenges. First, huge feature distinction between support and query images causes knowledge transferring barrier, which harms the segmentation performance. Second, few support samples cause unrepresentative of support features, hardly to guide high-quality query segmentation. To deal with the above two issues, we propose self-distillation embedded supervised affinity attention model (SD-AANet) to improve the performance of few-shot segmentation task. Specifically, the self-distillation guided prototype module (SDPM) extracts intrinsic prototype by self-distillation between support and query to capture representative features. The supervised affinity attention module (SAAM) adopts support ground truth to guide the production of high quality query attention map, which can learn affinity information to focus on whole area of query target. Extensive experiments prove that our SD-AANet significantly improves the performance comparing with existing methods. Comprehensive ablation experiments and visualization studies also show the significant effect of SDPM and SAAM for few-shot segmentation task. On benchmark datasets, PASCAL-5i and COCO-20i, our proposed SD-AANet both achieve state-of-the-art results. Our code will be publicly available soon.
More than 90% of colorectal cancer is gradually transformed from colorectal polyps. In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer. Therefore, automatic polyp segmentation t echniques are of great importance for both patients and doctors. Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder. However, both the two operations easily generate plenty of redundant information, which will weaken the complementarity between different level features, resulting in inaccurate localization and blurred edges of polyps. To address this challenge, we propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image. Specifically, we first design a subtraction unit (SU) to produce the difference features between adjacent levels in encoder. Then, we pyramidally equip the SUs at different levels with varying receptive fields, thereby obtaining rich multi-scale difference information. In addition, we build a training-free network LossNet to comprehensively supervise the polyp-aware features from bottom layer to top layer, which drives the MSNet to capture the detailed and structural cues simultaneously. Extensive experiments on five benchmark datasets demonstrate that our MSNet performs favorably against most state-of-the-art methods under different evaluation metrics. Furthermore, MSNet runs at a real-time speed of $sim$70fps when processing a $352 times 352$ image. The source code will be publicly available at url{https://github.com/Xiaoqi-Zhao-DLUT/MSNet}. keywords{Colorectal Cancer and Automatic Polyp Segmentation and Subtraction and LossNet.}
Location and appearance are the key cues for video object segmentation. Many sources such as RGB, depth, optical flow and static saliency can provide useful information about the objects. However, existing approaches only utilize the RGB or RGB and o ptical flow. In this paper, we propose a novel multi-source fusion network for zero-shot video object segmentation. With the help of interoceptive spatial attention module (ISAM), spatial importance of each source is highlighted. Furthermore, we design a feature purification module (FPM) to filter the inter-source incompatible features. By the ISAM and FPM, the multi-source features are effectively fused. In addition, we put forward an automatic predictor selection network (APS) to select the better prediction of either the static saliency predictor or the moving object predictor in order to prevent over-reliance on the failed results caused by low-quality optical flow maps. Extensive experiments on three challenging public benchmarks (i.e. DAVIS$_{16}$, Youtube-Objects and FBMS) show that the proposed model achieves compelling performance against the state-of-the-arts. The source code will be publicly available at textcolor{red}{url{https://github.com/Xiaoqi-Zhao-DLUT/Multi-Source-APS-ZVOS}}.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا