ﻻ يوجد ملخص باللغة العربية
Active wireless capsule endoscopy (WCE) based on simultaneous magnetic actuation and localization (SMAL) techniques holds great promise for improving diagnostic accuracy, reducing examination time and relieving operator burden. To date, the rotating magnetic actuation methods have been constrained to use a continuously rotating permanent magnet. In this paper, we first propose the reciprocally rotating magnetic actuation (RRMA) approach for active WCE to enhance patient safety. We first show how to generate a desired reciprocally rotating magnetic field for capsule actuation, and provide a theoretical analysis of the potential risk of causing volvulus due to the capsule motion. Then, an RRMA-based SMAL workflow is presented to automatically propel a capsule in an unknown tubular environment. We validate the effectiveness of our method in real-world experiments to automatically propel a robotic capsule in an ex-vivo pig colon. The experiment results show that our approach can achieve efficient and robust propulsion of the capsule with an average moving speed of $2.48 mm/s$ in the pig colon, and demonstrate the potential of using RRMA to enhance patient safety, reduce the inspection time, and improve the clinical acceptance of this technology.
Simultaneous Magnetic Actuation and Localization (SMAL) is a promising technology for active wireless capsule endoscopy (WCE). In this paper, an adaptive SMAL system is presented to efficiently propel and precisely locate a capsule in a tubular envir
Ultrasound (US) imaging is widely employed for diagnosis and staging of peripheral vascular diseases (PVD), mainly due to its high availability and the fact it does not emit radiation. However, high inter-operator variability and a lack of repeatabil
This paper presents an algorithmic framework for the distributed on-line source seeking, termed as DoSS, with a multi-robot system in an unknown dynamical environment. Our algorithm, building on a novel concept called dummy confidence upper bound (D-
Hybrid ground and aerial vehicles can possess distinct advantages over ground-only or flight-only designs in terms of energy savings and increased mobility. In this work we outline our unified framework for controls, planning, and autonomy of hybrid
Navigation applications relying on the Global Navigation Satellite System (GNSS) are limited in indoor environments and GNSS-denied outdoor terrains such as dense urban or forests. In this paper, we present a novel accurate, robust and low-cost GNSS-