ﻻ يوجد ملخص باللغة العربية
Traffic flow forecasting is a crucial task in urban computing. The challenge arises as traffic flows often exhibit intrinsic and latent spatio-temporal correlations that cannot be identified by extracting the spatial and temporal patterns of traffic data separately. We argue that such correlations are universal and play a pivotal role in traffic flow. We put forward spacetime interval learning as a paradigm to explicitly capture these correlations through a unified analysis of both spatial and temporal features. Unlike the state-of-the-art methods, which are restricted to a particular road network, we model the universal spatio-temporal correlations that are transferable from cities to cities. To this end, we propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor comprising the data from its neighbors within close time points. Based on this idea, we introduce spacetime neural network (STNN), which employs novel spacetime convolution and attention mechanism to learn the universal spatio-temporal correlations. The proposed STNN captures local traffic patterns, which does not depend on a specific network structure. As a result, a trained STNN model can be applied on any unseen traffic networks. We evaluate the proposed STNN on two public real-world traffic datasets and a simulated dataset on dynamic networks. The experiment results show that STNN not only improves prediction accuracy by 15% over state-of-the-art methods, but is also effective in handling the case when the traffic network undergoes dynamic changes as well as the superior generalization capability.
Traffic forecasting is a particularly challenging application of spatiotemporal forecasting, due to the time-varying traffic patterns and the complicated spatial dependencies on road networks. To address this challenge, we learn the traffic network a
Traffic forecasting is a core element of intelligent traffic monitoring system. Approaches based on graph neural networks have been widely used in this task to effectively capture spatial and temporal dependencies of road networks. However, these app
For the last few years it has been observed that the Deep Neural Networks (DNNs) has achieved an excellent success in image classification, speech recognition. But DNNs are suffer great deal of challenges for time series forecasting because most of t
Research in deep learning models to forecast traffic intensities has gained great attention in recent years due to their capability to capture the complex spatio-temporal relationships within the traffic data. However, most state-of-the-art approache
Traffic flow forecasting is of great significance for improving the efficiency of transportation systems and preventing emergencies. Due to the highly non-linearity and intricate evolutionary patterns of short-term and long-term traffic flow, existin