ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of the long range electrostatic interaction in twisted bilayer graphene are described using the Hartree-Fock approximation. The results show a significant dependence of the band widths and shapes on electron filling, and the existence of broken symmetry phases at many densities, either valley/spin polarized, with broken sublattice symmetry, or both.
We study the symmetries of twisted trilayer graphenes band structure under various extrinsic perturbations, and analyze the role of long-range electron-electron interactions near the first magic angle. The electronic structure is modified by these in teractions in a similar way to twisted bilayer graphene. We analyze electron pairing due to long-wavelength charge fluctuations, which are coupled among themselves via the Coulomb interaction and additionally mediated by longitudinal acoustic phonons. We find superconducting phases with either spin singlet/valley triplet or spin triplet/valley singlet symmetry, with critical temperatures of up to a few Kelvin for realistic choices of parameters.
Angle disorder is an intrinsic feature of twisted bilayer graphene and other moire materials. Here, we discuss electron transport in twisted bilayer graphene in the presence of angle disorder. We compute the local density of states and the Landauer-B uttiker transmission through an angle disorder barrier of width comparable to the moire period, using a decimation technique based on a real space description. We find that barriers which separate regions where the width of the bands differ by 50% or more lead to a minor suppression of the transmission, and that the transmission is close to one for normal incidence, which is reminiscent of Klein tunneling. These results suggest that transport in twisted bilayer graphene is weakly affected by twist angle disorder.
Recent experiments have measured local uniaxial strain fields in twisted bilayer graphene (TBG). Our calculations found that the finite Berry curvature generated by breaking the sublattice symmetry and the band proximity between narrow bands in these TBG induces a giant Berry dipole of order 10,nm or larger. The large Berry dipole leads to transverse topological non-linear charge currents which dominates over the linear bulk valley current at experimentally accessible crossover in-plane electric field of $sim 0.1 {rm mV} / mu rm{m}$. This anomalous Hall effect, due to Berry dipole, is strongly tunable by the strain parameters, electron fillings, gap size, and temperature.
The effect of an hexagonal boron nitride (hBN) layer close aligned with twisted bilayer graphene (TBG) is studied. At sufficiently low angles between twisted bilayer graphene and hBN, $theta_{hBN} lesssim 2^circ$, the graphene electronic structure is strongly disturbed. The width of the low energy peak in the density of states changes from $W sim 5 - 10$ meV for a decoupled system to $sim 20 - 30$ meV. Spikes in the density of states due to van Hove singularities are smoothed out. We find that for a realistic combination of the twist angle in the TBG and the twist angle between the hBN and the graphene layer the system can be described using a single moire unit cell.
The occurrence of superconducting and insulating phases is well-established in twisted graphene bilayers, and they have also been reported in other arrangements of graphene layers. We investigate three such arrangements: untwisted AB bilayer graphene on an hBN substrate, two graphene bilayers twisted with respect to each other, and a single ABC stacked graphene trilayer on an hBN substrate. Narrow bands with different topology occur in all cases, producing a high density of states which enhances the role of interactions. We investigate the effect of the long range Coulomb interaction, treated within the self consistent Hartree-Fock approximation. We find that the on-site part of the Fock potential strongly modifies the band structure at charge neutrality. The Hartree part does not significantly modify the shape and width of the bands in the three cases considered here, in contrast to the effect that such a potential has in twisted bilayer graphene.
We examine the combined effects of a Kekule coupling texture (KC) and a Dzyaloshinskii-Moriya interaction (DMI) in a two-dimensional ferromagnetic honeycomb lattice. By analyzing the gap closing conditions and the
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا