ترغب بنشر مسار تعليمي؟ اضغط هنا

Band Structure and Superconductivity in Twisted Trilayer Graphene

484   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the symmetries of twisted trilayer graphenes band structure under various extrinsic perturbations, and analyze the role of long-range electron-electron interactions near the first magic angle. The electronic structure is modified by these interactions in a similar way to twisted bilayer graphene. We analyze electron pairing due to long-wavelength charge fluctuations, which are coupled among themselves via the Coulomb interaction and additionally mediated by longitudinal acoustic phonons. We find superconducting phases with either spin singlet/valley triplet or spin triplet/valley singlet symmetry, with critical temperatures of up to a few Kelvin for realistic choices of parameters.

قيم البحث

اقرأ أيضاً

Moire quantum matter has emerged as a novel materials platform where correlated and topological phases can be explored with unprecedented control. Among them, magic-angle systems constructed from two or three layers of graphene have shown robust supe rconducting phases with unconventional characteristics. However, direct evidence for unconventional pairing remains to be experimentally demonstrated. Here, we show that magic-angle twisted trilayer graphene (MATTG) exhibits superconductivity up to in-plane magnetic fields in excess of 10 T, which represents a large ($2sim3$ times) violation of the Pauli limit for conventional spin-singlet superconductors. This observation is surprising for a system which is not expected to have strong spin-orbit coupling. Furthermore, the Pauli limit violation is observed over the entire superconducting phase, indicating that it is not related to a possible pseudogap phase with large superconducting amplitude pairing. More strikingly, we observe reentrant superconductivity at large magnetic fields, which is present in a narrower range of carrier density and displacement field. These findings suggest that the superconductivity in MATTG is likely driven by a mechanism resulting in non-spin-singlet Cooper pairs, where the external magnetic field can cause transitions between phases with potentially different order parameters. Our results showcase the richness of moire superconductivity and may pave a new route towards designing next-generation exotic quantum matter.
Twisted graphene multilayers have demonstrated to yield a versatile playground to engineer controllable electronic states. Here, by combining first-principles calculations and low-energy models, we demonstrate that twisted graphene trilayers provide a tunable system where van Hove singularities can be controlled electrically. In particular, it is shown that besides the band flattening, bulk valley currents appear, which can be quenched by local chemical dopants. We finally show that in the presence of electronic interactions, a non-uniform superfluid density emerges, whose non-uniformity gives rise to spectroscopic signatures in dispersive higher energy bands. Our results put forward twisted trilayers as a tunable van der Waals heterostructure displaying electrically controllable flat bands and bulk valley currents.
We report the observation of superconductivity in rhombohedral trilayer graphene electrostatically doped with holes. Superconductivity occurs in two distinct regions within the space of gate-tuned charge carrier density and applied electric displacem ent field, which we denote SC1 and SC2. The high sample quality allows for detailed mapping of the normal state Fermi surfaces by quantum oscillations, which reveal that in both cases superconductivity arises from a normal state described by an annular Fermi sea that is proximal to an isospin symmetry breaking transition where the Fermi surface degeneracy changes. The upper out-of-plane critical field $B_{Cperp}approx 10 mathrm{mT}$ for SC1 and $1mathrm{mT}$ for SC2, implying coherence lengths $xi$ of 200nm and 600nm, respectively. The simultaneous observation of transverse magnetic electron focusing implies a mean free path $ellgtrsim3.5mathrm{mu m}$. Superconductivity is thus deep in the clean limit, with the disorder parameter $d=xi/ell<0.1$. SC1 emerge from a paramagnetic normal state and is suppressed with in-plane magnetic fields in agreement with the Pauli paramagnetic limit. In contrast, SC2 emerges from a spin-polarized, valley-unpolarized half-metal. Measurements of the in-plane critical field show that this superconductor exceeds the Pauli limit by at least one order of magnitude. We discuss our results in light of several mechanisms including conventional phonon-mediated pairing, pairing due to fluctuations of the proximal isospin order, and intrinsic instabilities of the annular Fermi liquid. Our observation of superconductivity in a clean and structurally simple two-dimensional metal hosting a variety of gate tuned magnetic states may enable a new class of field-effect controlled mesoscopic electronic devices combining correlated electron phenomena.
Recent experimental and theoretical investigations demonstrate that twisted trilayer graphene (tTLG) is a highly tunable platform to study the correlated insulating states, ferromagnetism, and superconducting properties. Here we explore the possibili ty of tuning electronic correlations of the tTLG via a vertical pressure. A full tight-binding model is used to accurately describe the pressure-dependent interlayer interactions. Our results show that pressure can push a relatively larger twist angle (for instance, $1.89^{circ}$) tTLG to reach the flat-band regime. Next, we obtain the relationship between the pressure-induced magic angle value and the critical pressure. These critical pressure values are almost half of that needed in the case of twisted bilayer graphene. Then, plasmonic properties are further investigated in the flat band tTLG with both zero-pressure magic angle and pressure-induced magic angle. Two plasmonic modes are detected in these two kinds of flat band samples. By comparison, one is a high energy damping-free plasmon mode that shows similar behavior, and the other is a low energy plasmon mode (flat-band plasmon) that shows obvious differences. The flat-band plasmon is contributed by both interband and intraband transitions of flat bands, and its divergence is due to the various shape of the flat bands in tTLG with zero-pressure and pressure-induced magic angles. This may provide an efficient way of tuning between regimes with strong and weak electronic interactions in one sample and overcoming the technical requirement of precise control of the twist angle in the study of correlated physics.
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL G) presents a unique platform to study correlation phenomena, in which the Coulomb energy dominates over the quenched kinetic energy as a result of hybridized flat bands. Extending this approach to the case of twisted multilayer graphene would allow even higher control over the band structure because of the reduced symmetry of the system. Here, we study electronic transport properties in twisted trilayer graphene (tTLG, bilayer on top of monolayer graphene heterostructure). We observed the formation of van Hove singularities which are highly tunable by twist angle and displacement field and can cause strong correlation effects under optimum conditions, including superconducting states. We provide basic theoretical interpretation of the observed electronic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا