ﻻ يوجد ملخص باللغة العربية
The effects of the long range electrostatic interaction in twisted bilayer graphene are described using the Hartree-Fock approximation. The results show a significant dependence of the band widths and shapes on electron filling, and the existence of broken symmetry phases at many densities, either valley/spin polarized, with broken sublattice symmetry, or both.
Twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (h-BN) substrate can exhibit an anomalous Hall effect at 3/4 filling due to the spontaneous valley polarization in valley resolved moire bands with opposite Chern number [Science 367
Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetical
When two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here we present evidence that near three-quarters ($3/4$) filling of the conduc
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s
The discovery of magic angle twisted bilayer graphene (MATBG) has unveiled a rich variety of superconducting, magnetic and topologically nontrivial phases. The existence of all these phases in one material, and their tunability, has opened new pathwa