ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatic interactions in twisted bilayer graphene

538   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of the long range electrostatic interaction in twisted bilayer graphene are described using the Hartree-Fock approximation. The results show a significant dependence of the band widths and shapes on electron filling, and the existence of broken symmetry phases at many densities, either valley/spin polarized, with broken sublattice symmetry, or both.

قيم البحث

اقرأ أيضاً

Twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (h-BN) substrate can exhibit an anomalous Hall effect at 3/4 filling due to the spontaneous valley polarization in valley resolved moire bands with opposite Chern number [Science 367 , 900 (2020), Science 365, 605 (2019)]. It was observed that a small DC current is able to switch the valley polarization and reverse the sign of the Hall conductance [Science 367, 900 (2020), Science 365, 605 (2019)]. Here, we discuss the mechanism of the current switching of valley polarization near the transition temperature, where bulk dissipative transport dominates. We show that for a sample with rotational symmetry breaking, a DC current may generate an electron density difference between the two valleys (valley density difference). The current induced valley density difference in turn induces a first order transition in the valley polarization. We emphasize that the inter-valley scattering plays a central role since it is the channel for exchanging electrons between the two valleys. We further estimate the valley density difference in the TBG/h-BN system with a microscopic model, and find a significant enhancement of the effect in the magic angle regime.
Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetical ly flat Chern bands and highlighted the critical role of a particular quantum band geometry. Thus far, however, FCI states have only been observed in Bernal-stacked bilayer graphene aligned with hexagonal boron nitride (BLG/hBN), in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field and limiting its potential for applications. By contrast, magic angle twisted bilayer graphene (MATBG) supports flat Chern bands at zero magnetic field, and therefore offers a promising route toward stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in MATBG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically-trivial charge density wave states. Unlike the BLG/hBN platform, we demonstrate that the principal role of the weak magnetic field here is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum band geometry favorable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in moire systems with native flat Chern bands.
When two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here we present evidence that near three-quarters ($3/4$) filling of the conduc tion miniband these enhanced interactions drive the twisted bilayer graphene into a ferromagnetic state. We observe emergent ferromagnetic hysteresis, with a giant anomalous Hall (AH) effect as large as $10.4 mathrm{kOmega}$ and signs of chiral edge states in a narrow density range around an apparent insulating state at $3/4$. Surprisingly, the magnetization of the sample can be reversed by applying a small DC current. Although the AH resistance is not quantized and dissipation is significant, we suggest that the system is an incipient Chern insulator.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s uperconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
The discovery of magic angle twisted bilayer graphene (MATBG) has unveiled a rich variety of superconducting, magnetic and topologically nontrivial phases. The existence of all these phases in one material, and their tunability, has opened new pathwa ys for the creation of unusual gate tunable junctions. However, the required conditions for their creation - gate induced transitions between phases in zero magnetic field - have so far not been achieved. Here, we report on the first experimental demonstration of a device that is both a zero-field Chern insulator and a superconductor. The Chern insulator occurs near moire cell filling factor v = +1 in a hBN non-aligned MATBG device and manifests itself via an anomalous Hall effect. The insulator has Chern number C = +-1 and a relatively high Curie temperature of Tc = 4.5 K. Gate tuning away from this state exposes strong superconducting phases with critical temperatures of up to Tc = 3.5 K. In a perpendicular magnetic field above B > 0.5 T we observe a transition of the /C/= +1 Chern insulator from Chern number C = +-1 to C = 3, characterized by a quantized Hall plateau with Ryx = h/3e2. These observations show that interaction-induced symmetry breaking in MATBG leads to zero-field ground states that include almost degenerate and closely competing Chern insulators, and that states with larger Chern numbers couple most strongly to the B-field. By providing the first demonstration of a system that allows gate-induced transitions between magnetic and superconducting phases, our observations mark a major milestone in the creation of a new generation of quantum electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا