ترغب بنشر مسار تعليمي؟ اضغط هنا

If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and a dissipative piece, represented by a hermiticity-preserving superoperator; however, the division of open system dynamics into unitary and dissipative pieces is non-unique. For finite-dimensional quantum systems, we resolve this non-uniqueness by specifying a norm on the space of dissipative superoperators and defining the canonical Hamiltonian to be the one whose dissipator is minimal. We show that the canonical Hamiltonian thus defined is equivalent to the Hamiltonian initially defined by Lindblad, and that it is uniquely specified by requiring the dissipators jump operators to be traceless. For a system weakly coupled to its environment, we give a recursive formula for computing the canonical effective Hamiltonian to arbitrary orders in perturbation theory, which we can think of as a perturbative scheme for renormalizing the systems bare Hamiltonian.
The reflected entropy $S_R(A:B)$ of a density matrix $rho_{AB}$ is a bipartite correlation measure lower-bounded by the quantum mutual information $I(A:B)$. In holographic states satisfying the quantum extremal surface formula, where the reflected en tropy is related to the area of the entanglement wedge cross-section, there is often an order-$N^2$ gap between $S_R$ and $I$. We provide an information-theoretic interpretation of this gap by observing that $S_R - I$ is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity $S_R - I$ the Markov gap. We then prove that for time-symmetric states in pure AdS$_3$ gravity, the Markov gap is universally lower bounded by $log(2) ell_{text{AdS}}/2 G_N$ times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling $S_R - I$ using fixed area states. This analysis involves deriving a formula for the quantum fidelity -- in fact, for all the sandwiched Renyi relative entropies -- between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
OrbWeaver, an automatic knowledge extraction system paired with a human interface, streamlines the use of unintuitive natural language processing software for modeling systems from their documentation. OrbWeaver enables the indirect transfer of knowl edge about legacy systems by leveraging open source tools in document understanding and processing as well as using web based user interface constructs. By design, OrbWeaver is scalable, extensible, and usable; we demonstrate its utility by evaluating its performance in processing a corpus of documents related to advanced persistent threats in the cyber domain. The results indicate better knowledge extraction by revealing hidden relationships, linking co-related entities, and gathering evidence.
We argue that one of the following statements must be true: (a) extensive violations of quantum information theorys additivity conjectures exist or (b) there exists a set of `disentangled black hole microstates that can account for the entire Bekenst ein-Hawking entropy, up to at most a subleading $O(1)$ correction. Possibility (a) would be a significant result in quantum communication theory, demonstrating that entanglement can enhance the ability to transmit information much more than has currently been established. Option (b) would provide new insight into the microphysics of black holes. In particular, the disentangled microstates would have to have nontrivial structure at or outside the black hole horizon, assuming the validity of the quantum extremal surface prescription for calculating entanglement entropy in AdS/CFT.
Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0ldots 0rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise. We also provide a numerical evidence that the protocol works in the presence of noise, and formulate a condition under which the noise-resilience follows rigorously.
Optimally encoding classical information in a quantum system is one of the oldest and most fundamental challenges of quantum information theory. Holevos bound places a hard upper limit on such encodings, while the Holevo-Schumacher-Westmoreland (HSW) theorem addresses the question of how many classical messages can be packed into a given quantum system. In this article, we use Sens recent quantum joint typicality results to prove a one-shot multiparty quantum packing lemma generalizing the HSW theorem. The lemma is designed to be easily applicable in many network communication scenarios. As an illustration, we use it to straightforwardly obtain quantum generalizations of well-known classical coding schemes for the relay channel: multihop, coherent multihop, decode-forward, and partial decode-forward. We provide both finite blocklength and asymptotic results, the latter matching existing classical formulas. Given the key role of the classical packing lemma in network information theory, our packing lemma should help open the field to direct quantum generalization.
Bit threads provide an alternative description of holographic entanglement, replacing the Ryu-Takayanagi minimal surface with bulk curves connecting pairs of boundary points. We use bit threads to prove the monogamy of mutual information (MMI) proper ty of holographic entanglement entropies. This is accomplished using the concept of a so-called multicommodity flow, adapted from the network setting, and tools from the theory of convex optimization. Based on the bit thread picture, we conjecture a general ansatz for a holographic state, involving only bipartite and perfect-tensor type entanglement, for any decomposition of the boundary into four regions. We also give new proofs of analogous theorems on networks.
Barnum, Crepeau, Gottesman, Tapp, and Smith (quant-ph/0205128) proposed methods for authentication of quantum messages. The first method is an interactive protocol (TQA) based on teleportation. The second method is a noninteractive protocol (QA) in w hich the sender first encrypts the message using a protocol QEnc and then encodes the quantum ciphertext with an error correcting code chosen secretly from a set (a purity test code (PTC)). Encryption was shown to be necessary for authentication. We augment the protocol QA with an extra step which recycles the entire encryption key provided QA accepts the message. We analyze the resulting integrated protocol for quantum authentication and key generation, which we call QA+KG. Our main result is a proof that QA+KG is universal composably (UC) secure in the Ben-Or-Mayers model (quant-ph/0409062). More specifically, this implies the UC-security of (a) QA, (b) recycling of the encryption key in QA, and (c) key-recycling of the encryption scheme QEnc by appending PTC. For an m-qubit message, encryption requires 2m bits of key; but PTC can be performed using only O(log m) + O(log e) bits of key for probability of failure e. Thus, we reduce the key required for both QA and QEnc, from linear to logarithmic net consumption, at the expense of one bit of back communication which can happen any time after the conclusion of QA and before reusing the key. UC-security of QA also extends security to settings not obvious from quant-ph/0205128. Our security proof structure is inspired by and similar to that of quant-ph/0205128, reducing the security of QA to that of TQA. In the process, we define UC-secure entanglement, and prove the UC-security of the entanglement generating protocol given in quant-ph/0205128, which could be of independent interest.
One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantit y from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Renyi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.
We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا