ﻻ يوجد ملخص باللغة العربية
One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Renyi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.
In this paper, we study measures of quantum non-Markovianity based on the conditional mutual information. We obtain such measures by considering multiple parts of the total environment such that the conditional mutual information can be defined in th
Based on the monogamy of entanglement, we develop the technique of quantum conditioning to build an {it additive} entanglement measure: the conditional entanglement of mutual information. Its {it operational} meaning is elaborated to be the minimal n
In this work, we consider an upper bound for the quantum mutual information in thermal states of a bipartite quantum system. This bound is related with the interaction energy and logarithm of the partition function of the system. We demonstrate the c
We study the relation between the quantum conditional mutual information and the quantum $alpha$-Renyi divergences. Considering the totally antisymmetric state we show that it is not possible to attain a proper generalization of the quantum condition
In certain cases the communication time required to deterministically implement a nonlocal bipartite unitary using prior entanglement and LOCC (local operations and classical communication) can be reduced by a factor of two. We introduce two such fas