ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Knowledge Extraction with Human Interface

48   0   0.0 ( 0 )
 نشر من قبل Steve Schmidt
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

OrbWeaver, an automatic knowledge extraction system paired with a human interface, streamlines the use of unintuitive natural language processing software for modeling systems from their documentation. OrbWeaver enables the indirect transfer of knowledge about legacy systems by leveraging open source tools in document understanding and processing as well as using web based user interface constructs. By design, OrbWeaver is scalable, extensible, and usable; we demonstrate its utility by evaluating its performance in processing a corpus of documents related to advanced persistent threats in the cyber domain. The results indicate better knowledge extraction by revealing hidden relationships, linking co-related entities, and gathering evidence.



قيم البحث

اقرأ أيضاً

LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation cl assifier and aggregating the scores of entity pairs from a large corpus. Also, we release two benchmark datasets for evaluation and future research.
This work describes a new human-in-the-loop (HitL) assistive grasping system for individuals with varying levels of physical capabilities. We investigated the feasibility of using four potential input devices with our assistive grasping system interf ace, using able-bodied individuals to define a set of quantitative metrics that could be used to assess an assistive grasping system. We then took these measurements and created a generalized benchmark for evaluating the effectiveness of any arbitrary input device into a HitL grasping system. The four input devices were a mouse, a speech recognition device, an assistive switch, and a novel sEMG device developed by our group that was connected either to the forearm or behind the ear of the subject. These preliminary results provide insight into how different interface devices perform for generalized assistive grasping tasks and also highlight the potential of sEMG based control for severely disabled individuals.
Healthcare question answering assistance aims to provide customer healthcare information, which widely appears in both Web and mobile Internet. The questions usually require the assistance to have proficient healthcare background knowledge as well as the reasoning ability on the knowledge. Recently a challenge involving complex healthcare reasoning, HeadQA dataset, has been proposed, which contains multiple-choice questions authorized for the public healthcare specialization exam. Unlike most other QA tasks that focus on linguistic understanding, HeadQA requires deeper reasoning involving not only knowledge extraction, but also complex reasoning with healthcare knowledge. These questions are the most challenging for current QA systems, and the current performance of the state-of-the-art method is slightly better than a random guess. In order to solve this challenging task, we present a Multi-step reasoning with Knowledge extraction framework (MurKe). The proposed framework first extracts the healthcare knowledge as supporting documents from the large corpus. In order to find the reasoning chain and choose the correct answer, MurKe iterates between selecting the supporting documents, reformulating the query representation using the supporting documents and getting entailment score for each choice using the entailment model. The reformulation module leverages selected documents for missing evidence, which maintains interpretability. Moreover, we are striving to make full use of off-the-shelf pre-trained models. With less trainable weight, the pre-trained model can easily adapt to healthcare tasks with limited training samples. From the experimental results and ablation study, our system is able to outperform several strong baselines on the HeadQA dataset.
Event extraction is a classic task in natural language processing with wide use in handling large amount of yet rapidly growing financial, legal, medical, and government documents which often contain multiple events with their elements scattered and mixed across the documents, making the problem much more difficult. Though the underlying relations between event elements to be extracted provide helpful contextual information, they are somehow overlooked in prior studies. We showcase the enhancement to this task brought by utilizing the knowledge graph that captures entity relations and their attributes. We propose a first event extraction framework that embeds a knowledge graph through a Graph Neural Network and integrates the embedding with regular features, all at document-level. Specifically, for extracting events from Chinese financial announcements, our method outperforms the state-of-the-art method by 5.3% in F1-score.
Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate ge ographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POIs and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا