ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole microstates vs. the additivity conjectures

43   0   0.0 ( 0 )
 نشر من قبل Geoffrey Penington
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that one of the following statements must be true: (a) extensive violations of quantum information theorys additivity conjectures exist or (b) there exists a set of `disentangled black hole microstates that can account for the entire Bekenstein-Hawking entropy, up to at most a subleading $O(1)$ correction. Possibility (a) would be a significant result in quantum communication theory, demonstrating that entanglement can enhance the ability to transmit information much more than has currently been established. Option (b) would provide new insight into the microphysics of black holes. In particular, the disentangled microstates would have to have nontrivial structure at or outside the black hole horizon, assuming the validity of the quantum extremal surface prescription for calculating entanglement entropy in AdS/CFT.

قيم البحث

اقرأ أيضاً

We propose that every supersymmetric four dimensional black hole of finite area can be split up into microstates made up of primitive half-BPS atoms. The mutual non-locality of the charges of these atoms binds the state together. In support of this p roposal, we display a class of smooth, horizon-free, four dimensional supergravity solutions carrying the charges of black holes, with multiple centers each carrying the charge of a half-BPS state. At vanishing string coupling the solutions collapse to a bound system of intersecting D-branes. At weak coupling the system expands into the non-compact directions forming a topologically complex geometry. At strong coupling, a new dimension opens up, and the solutions form a foam of spheres threaded by flux in M-theory. We propose that this transverse growth of the underlying bound state of constitutent branes is responsible for the emergence of black hole horizons for coarse-grained observables. As such, it suggests the link between the D-brane and spacetime foam approaches to black hole entropy.
35 - Alex Giacomini 2004
In this article we will investigate the origin of central extensions in the Poisson algebra of charges, which arise in the dimensionally reduced theories describing black holes. We will see that the equations of motion and constraints arising from th e dimensionally reduced action involve two fields i.e. the dilaton and the conformal factor. This fields can be integrated by means of a free field. The transformation properties of this field are studied. It will be shown that in the near horizon approximation this field must transform like an affine scalar. The stress tensor that generates such affine transformations is the improved stress tensor. The second derivative term in the tensor is responsible for the central extension in the Poisson algebra. It is therefore the affine transformation property that is responsible for the arising of central charges The central charge can be used to compute the black hole entropy by means of the Cardy formula.
We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entang led states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the information-free property of black hole horizons are those whose isometries are tensors corresponding to states of tripartite systems with maximally mixed subsystems.
Almheiri et al. have emphasized that otherwise reasonable beliefs about black hole evaporation are incompatible with the monogamy of quantum entanglement, a general property of quantum mechanics. We investigate the final-state projection model of bla ck hole evaporation proposed by Horowitz and Maldacena, pointing out that this model admits cloning of quantum states and polygamous entanglement, allowing unitarity of the evaporation process to be reconciled with smoothness of the black hole event horizon. Though the model seems to require carefully tuned dynamics to ensure exact unitarity of the black hole S-matrix, for a generic final-state boundary condition the deviations from unitarity are exponentially small in the black hole entropy; furthermore observers inside black holes need not detect any deviations from standard quantum mechanics. Though measurements performed inside old black holes could potentially produce causality-violating phenomena, the computational complexity of decoding the Hawking radiation may render the causality violation unobservable. Final-state projection models illustrate how inviolable principles of standard quantum mechanics might be circumvented in a theory of quantum gravity.
361 - Aharon Davidson 2019
We postulate a Planck scale horizon unit area, with no bits of information locally attached to it, connected but otherwise of free form, and let $n$ such geometric units compactly tile the black hole horizon. Associated with each topologically distin ct tiling configuration is then a simple, connected, undirected, unlabeled, planar, chordal graph. The asymptotic enumeration of the corresponding integer sequence gives rise to the Bekenstein-Hawking area entropy formula, automatically accompanied by a proper logarithmic term, and fixes the size of the horizon unit area, thereby constituting a global realization of Wheelers it from bit phrase. Invoking Polyas theorem, an exact number theoretical entropy spectrum is offered for the 2+1 dimensional quantum black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا