ترغب بنشر مسار تعليمي؟ اضغط هنا

We point out that fractionalized bosonic charge excitations can explain the recently discovered photo-induced superconducting-like response in $kappatext{-(ET})_2text{Cu}[text{N(CN)}_2]text{Br}$, an organic metal close to the Mott transition. The pum p laser exerts a periodic drive on the fractionalized field, creating a non-equilibrium condensate, which gives a Drude peak much narrower than the equilibrium scattering rate, hence superconducting-like response. Our proposal illuminates new possibilities of detecting fractionalization and can be readily tested in spin liquid candidates and in cold atom systems.
Recently, quantum oscillation of the resistance in insulating monolayer WTe$_2$ was reported. An explanation in terms of gap modulation in the hybridized Landau levels of an excitonic insulator was also proposed by one of us. However, the previous pi cture of gap modulation in the Landau levels spectrum was built on a pair of well nested electron and hole Fermi surfaces, while the monolayer WTe$_2$ has one hole and two electron Fermi pockets with relative anisotropy. Here we demonstrate that for system like monolayer WTe$_2$, the excitonic insulating state arising from the coupled one hole and two electron pockets possesses a finite region in interaction parameter space that shows gap modulation in a magnetic field. In this region, the thermally activated conductivity displays the $1/B$ periodic oscillation and it can further develop into discrete peaks at low temperature, in agreement with the experimental observation. We show that the relative anisotropy of the bands is a key parameter and the qunatum oscillations decrease rapidly if the anisotropy increases further than the realistic value for monolayer WTe$_2$.
In recent years, signatures of Majorana fermions have been demonstrated experimentally in several superconducting systems. However, finding systems which can be scaled up to accommodate a large number of Majorana fermions for quantum computation rema ins a major challenge for experimentalists. In a recent work [1], signatures of a pair of Majorana zero modes (MZMs) were found in a new experimental platform formed by EuS islands deposited on top of a gold wire which were made superconducting through proximity coupling to a superconductor. In this work, we provide a theoretical explanation for how MZMs can be formed in EuS/Au/superconductor heterostructures. This simple experimental setup provides a new route for realizing a large number of Majorana fermions for quantum computations.
The phenomena of odd-parity magnetoresistance and the planar Hall effect are deeply entwined with ferromagnetism. The intrinsic magnetization of the ordered state permits these unusual and rarely observed manifestations of Onsagers theorem when time reversal symmetry is broken at zero applied field. Here we study two classes of ferromagnetic materials, rare-earth magnets with high intrinsic coercivity and antiferromagnetic pyrochlores with strongly-pinned ferromagnetic layers at domain walls, which both exhibit odd-parity magnetoresistive behavior. The peculiar angular variation of the response with respect to the relative alignments of the magnetization, magnetic field, and current reveal the two underlying microscopic mechanisms: spin-polarization-dependent scattering of a Zeeman-shifted Fermi surface and magnetoresistance driven by the anomalous velocity physics usually associated with the anomalous Hall effect.
A recent observation of thermal Hall effect of magnetic origin in underdoped cuprates calls for critical re-examination of low-energy magnetic dynamics in undoped antiferromagnetic compound on square lattice, where traditional, renormalized spin-wave theory was believed to work well. Using Holstein-Primakoff boson formalism, we find that magnon-based theories can lead to finite Berry curvature in the magnon band once the Dzyaloshinskii-Moriya spin interaction is taken into account explicitly, but fail to produce non-zero thermal Hall conductivity. Assuming accidental doping by impurities and magnon scattering off of such impurity sites fails to predict skew scattering at the level of Born approximation. Local formation of skyrmion defects is also found incapable of generating magnon thermal Hall effect. Turning to spinon-based scenario, we write down a simple model by adding spin-dependent diagonal hopping to the well-known {pi}-flux model of spinons. The resulting two-band model has Chern number in the band structure, and generates thermal Hall conductivity whose magnetic field and temperature dependences mimic closely the observed thermal Hall signals. In disclaimer, there is no firm microscopic basis of this model and we do not claim to have found an explanation of the data, but given the unexpected nature of the experimental observation, it is hoped this work could serve as a first step towards reaching some level of understanding.
In our previous work [arXiv:1803.00999, Phys. Rev. Lett. 121, 046401 (2018)], we found a quantum spin liquid phase with a spinon Fermi surface in the two dimensional spin-1/2 Heisenberg model with four-spin ring exchange on a triangular lattice. In t his work we dope the spinon Fermi surface phase by studying the $t$-$J$ model with four-spin ring exchange. We perform density matrix renormalization group calculations on four-leg cylinders of a triangular lattice and find that the dominant pair correlation function is that of a pair density wave; i.e., it is oscillatory while decaying with distance with a power law. The doping dependence of the period is studied. This is the first example where pair density wave is the dominant pairing in a generic strongly interacting system where the pair density wave cannot be explained as a composite order and no special symmetry is required.
Using large-scale quantum Monte Carlo simulations, we exactly solve a model of Fermions hopping on the honeycomb lattice with cluster charge interactions, which has been proposed as an effective model with possible application to twisted bilayer grap hene near half-filling. We find an interaction driven semimetal to insulator transition to an insulating phase consisting of a valence bond solid with Kekule pattern. Finite size scaling reveals that the phase transition of the semimetal to Kekule valence bond solid phase is continuous and belongs to chiral XY universality class.
Pairs fluctuation supercurrents and inverse lifetimes were measured on epitaxial c-axis junctions of the cuprates in the pseudogap regime, with a $PrBa_2Cu_3O_{7-delta}$ barrier sandwiched in between two $YBa_2Cu_3O_{7-delta}$ or doped $YBa_2Cu_3O_y$ electrodes, with or without magnetic fields parallel to the a-b planes. All junctions had a $rm T_c(high)approx 85-90$ K and a $rm T_c(low)approx 50-55$ K electrodes, allowing us to study pairs fluctuation supercurrents and inverse life times in between these two temperatures. In junctions with a pseudogap electrode under zero field, an excesss current due to pair fluctuations was observed which persisted at temperatures above $rm T_c(low)$, in the pseudogap regime, and up to about $rm T_c(high)$. No such excess current was observed in junctions without a pseudo-gap in the electrode. The measured conductance spectra at temperatures above $rm T_c(low)$ were fitted using a modified fluctuations model by Scalapino [Phys. Rev. Lett. textbf{24}, 1052(1970)] of a junction with a serial resistance. We found that in the pseudo-gap regime, the conductance vs voltage consists of a narrow peak sitting on top of a very broad peak. This yielded two distinct pairs fluctuation lifetimes in the pseudogap electrode which differ by an order of magnitude up to about $rm T_c(high)$. Under in-plane fields, these two lifetime values remain separated in two distinct groups, which varied with increasing field moderately. We also found that detection of Amperian pairing [Phys. Rev. X textbf{4}, 031017 (2014)] in our cuprate junctions is not feasible, due to Josephson vortices penetration into the superconducting electrodes which drove the necessary field above the depairing field.
The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generat es a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range.
We propose an experiment to use the magneto-optical Faraday effect to probe the dynamic Hall conductivity of spin liquid candidates. Theory predicts that an external magnetic field will generate an internal gauge field. If the source of conductivity is in spinons with a Fermi surface, a finite Faraday rotation angle is expected. We predict the angle to scale as the square of the frequency rather than display the standard cyclotron resonance pattern. Furthermore, the Faraday effect should be able to distinguish the ground state of the spin liquid, as we predict no rotation for massless Dirac spinons. We give a semiquantitative estimate for the magnitude of the effect and find that it should be experimentally feasible to detect in both $kappa$-(ET)$_2$Cu$_2$(CN)$_3$ and, if the spinons form a Fermi surface, Herbertsmithite. We also comment on the magneto-optical Kerr effect and show that the imaginary part of the Kerr angle may be measurable.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا