ترغب بنشر مسار تعليمي؟ اضغط هنا

Kekule valence bond order in an extended Hubbard model on the honeycomb lattice, with possible applications to twisted bilayer graphene

108   0   0.0 ( 0 )
 نشر من قبل Xiao Yan Xu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using large-scale quantum Monte Carlo simulations, we exactly solve a model of Fermions hopping on the honeycomb lattice with cluster charge interactions, which has been proposed as an effective model with possible application to twisted bilayer graphene near half-filling. We find an interaction driven semimetal to insulator transition to an insulating phase consisting of a valence bond solid with Kekule pattern. Finite size scaling reveals that the phase transition of the semimetal to Kekule valence bond solid phase is continuous and belongs to chiral XY universality class.


قيم البحث

اقرأ أيضاً

The honeycomb lattice material Li2RuO3 undergoes a dimerization of Ru4+ cations on cooling below 270C, where the magnetic susceptibility vanishes. We use density functional theory calculations to show that this reflects the formation of a valence bon d crystal, with a strong bond disproportionation. On warming, x-ray diffraction shows that discrete three-fold symmetry is regained on average, and the dimerization apparently disappears. In contrast, local structural measurements using high-energy x-rays, show that disordered dimers survive at the nanoscale up to at least 650C. The high temperature phase of Li2RuO3 is thus an example of a valence bond liquid, where thermal fluctuations drive resonance between different dimer coverages, a classic analogue of the resonating valence bond state often discussed in connection with high T$_c$ cuprates.
We study magic angle graphene in the presence of both strain and particle-hole symmetry breaking due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction a nd substrate potentials, and explore a comprehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the incommensurate Kekule spiral (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moire translation symmetries, but preserves a modified translation symmetry $hat{T}$ -- which simultaneously shifts the spatial coordinates and rotates the $U(1)$ angle which characterizes the spontaneous inter-valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m agnetically ordered regions and extends close to the nearest-neighbor Heisenberg point. It exhibits a diamond-like singlet covering pattern with a $12$-site unit-cell. Our results suggest the possibility of a direct, possibly continuous, quantum phase transition from the neighboring $mathbf{q}=0$ coplanar magnetically ordered phase into the VBS phase. Moreover, a second phase which breaks lattice symmetries, and is of likely spin-nematic type, is found close to the transition to the ferromagnetic phase. The results have been obtained using numerical Exact Diagonalization. We discuss implications of our results on the nature of nearest-neighbor Heisenberg antiferromagnet.
Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor $J_1$ and second-neighbor $J_2$ antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond solids) to obtain the ground-state phase diagram. Neel order is stabilized for small values of the frustrating second-neighbor coupling. Increasing the ratio $J_2/J_1$, we find strong evidence for a continuous transition to a nonmagnetic phase at $J_2/J_1 approx 0.23$. Close to the transition point, the Gutzwiller-projected uniform resonating valence bond state gives an excellent approximation to the exact ground-state energy. For $0.23 lesssim J_2/J_1 lesssim 0.4$, a gapless $Z_2$ spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped spin liquid considered in previous works has significantly higher variational energy. Although the plaquette valence-bond order is expected to be present as soon as the Neel order melts, this ordered state becomes clearly favored only for $J_2/J_1 gtrsim 0.3$. Finally, for $0.36 lesssim J_2/J_1 le 0.5$, a valence-bond solid with columnar order takes over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined quantum critical point separating the Neel antiferromagnet from the plaquette valence-bond solid.
181 - Jinhua Sun , Donghui Xu , Yi Zhou 2014
Layered antiferromagnetic spin density wave (LAF) state is one of the plausible ground states of charge neutral Bernal stacked bilayer graphene. In this paper, we use determinant quantum Monte Carlo method to study the effect of the electric field on the magnetic order in bilayer Hubbard model on a honeycomb lattice. Our results qualitatively support the LAF ground state found in the mean field theory. The obtained magnetic moments, however, are much smaller than what are estimated in the mean field theory. As electric field increases, the magnetic order parameter rapidly decreases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا