ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Oscillation of Thermally Activated Conductivity in a Monolayer WTe$_2$-like Excitonic Insulator

68   0   0.0 ( 0 )
 نشر من قبل Wenyu He
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, quantum oscillation of the resistance in insulating monolayer WTe$_2$ was reported. An explanation in terms of gap modulation in the hybridized Landau levels of an excitonic insulator was also proposed by one of us. However, the previous picture of gap modulation in the Landau levels spectrum was built on a pair of well nested electron and hole Fermi surfaces, while the monolayer WTe$_2$ has one hole and two electron Fermi pockets with relative anisotropy. Here we demonstrate that for system like monolayer WTe$_2$, the excitonic insulating state arising from the coupled one hole and two electron pockets possesses a finite region in interaction parameter space that shows gap modulation in a magnetic field. In this region, the thermally activated conductivity displays the $1/B$ periodic oscillation and it can further develop into discrete peaks at low temperature, in agreement with the experimental observation. We show that the relative anisotropy of the bands is a key parameter and the qunatum oscillations decrease rapidly if the anisotropy increases further than the realistic value for monolayer WTe$_2$.



قيم البحث

اقرأ أيضاً

The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tun able fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHI is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons.
A monolayer of WTe$_2$ has been shown to display quantum spin Hall (QSH) edge modes persisting up to 100~K in transport experiments. Based on density-functional theory calculations and symmetry-based model building including the role of correlations and substrate support, we develop an effective electronic model for WTe$_2$ which fundamentally differs from other prototypical QSH settings: we find that the extraordinary robustness of quantum spin Hall edge modes in WTe$_2$ roots in a glide symmetry due to which the topological gap opens away from high-symmetry points in momentum space. While the indirect bulk gap is much smaller, the glide symmetry implies a large direct gap of up to 1~eV in the Brillouin zone region of the dispersing edge modes, and hence enables sharply boundary-localized QSH edge states depending on the specific boundary orientation.
The quantum spin Hall (QSH) state was recently demonstrated in monolayers of the transition metal dichalcogenide 1T-WTe$_2$ and is characterized by a band gap in the two-dimensional (2D) interior and helical one-dimensional (1D) edge states. Inducing superconductivity in the helical edge states would result in a 1D topological superconductor, a highly sought-after state of matter. In the present study, we use a novel dry-transfer flip technique to place atomically-thin layers of WTe$_2$ on a van der Waals superconductor, NbSe$_2$. Using scanning tunneling microscopy and spectroscopy (STM/STS), we demonstrate atomically clean surfaces and interfaces and the presence of a proximity-induced superconducting gap in the WTe$_2$ for thicknesses from a monolayer up to 7 crystalline layers. At the edge of the WTe$_2$ monolayer, we show that the superconducting gap coexists with the characteristic spectroscopic signature of the QSH edge state. Taken together, these observations provide conclusive evidence for proximity-induced superconductivity in the QSH edge state in WTe$_2$, a crucial step towards realizing 1D topological superconductivity and Majorana bound states in this van der Waals material platform.
We investigate the excitonic spectrum of MoS$_2$ monolayers and calculate its optical absorption properties over a wide range of energies. Our approach takes into account the anomalous screening in two dimensions and the presence of a substrate, both cast by a suitable effective Keldysh potential. We solve the Bethe-Salpeter equation using as a basis a Slater-Koster tight-binding model parameterized to fit ab initio MoS$_2$ band structure calculations. The resulting optical conductivity is in good quantitative agreement with existing measurements up to ultraviolet energies. We establish that the electronic contributions to the C excitons arise not from states in the vicinity of the $Gamma$ point, but from a set of $k$-points over extended portions of the Brillouin zone. Our results reinforce the advantages of approaches based on effective models to expeditiously explore the properties and tunability of excitons in TMD systems.
We analyze the transport properties of bilayer quantum Hall systems at total filling factor $ u=1$ in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charge d topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries, current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا