ترغب بنشر مسار تعليمي؟ اضغط هنا

At bright radio powers ($P_{rm 1.4 GHz} > 10^{25}$ W/Hz) the space density of the most powerful sources peaks at higher redshift than that of their weaker counterparts. This paper establishes whether this luminosity-dependent evolution persists for s ources an order of magnitude fainter than those previously studied, by measuring the steep--spectrum radio luminosity function (RLF) across the range $10^{24} < P_{rm 1.4 GHz} < 10^{28}$ W/Hz, out to high redshift. A grid-based modelling method is used, in which no assumptions are made about the RLF shape and high-redshift behaviour. The inputs to the model are the same as in Rigby et al. (2011): redshift distributions from radio source samples, together with source counts and determinations of the local luminosity function. However, to improve coverage of the radio power vs. redshift plane at the lowest radio powers, a new faint radio sample is introduced. This covers 0.8 sq. deg., in the Subaru/XMM-Newton Deep Field, to a 1.4 GHz flux density limit of $S_{rm 1.4 GHz} geq 100~mu$Jy, with 99% redshift completeness. The modelling results show that the previously seen high-redshift declines in space density persist to $P_{rm 1.4 GHz} < 10^{25}$ W/Hz. At $P_{rm 1.4 GHz} > 10^{26}$ W/Hz the redshift of the peak space density increases with luminosity, whilst at lower radio luminosities the position of the peak remains constant within the uncertainties. This `cosmic downsizing behaviour is found to be similar to that seen at optical wavelengths for quasars, and is interpreted as representing the transition from radiatively efficient to inefficient accretion modes in the steep-spectrum population. This conclusion is supported by constructing simple models for the space density evolution of these two different radio galaxy classes; these are able to successfully reproduce the observed variation in peak redshift.
The promise of multi-wavelength astronomy has been tempered by the large disparity in sensitivity and resolution between different wavelength regimes. Here we present a statistical approach which attempts to overcome this by fitting parametric models directly to image data. Specifically, we fit a model for the radio luminosity function (LF) of star-forming galaxies to pixel intensity distributions at 1.4 GHz coincident with near-IR selected sources in COSMOS. Taking a mass-limited sample in redshift bins across the range $0<z<4$ we are able to fit the radio LF with ~0.2 dex precision in the key parameters (e.g. Phi*,L*). Good agreement is seen between our results and those using standard methods at radio and other wavelengths. Integrating our luminosity functions to get the star formation rate density we find that galaxies with a stellar mass greater than $10^{9.5},$M$_{odot}$ contribute at least 50 per cent of cosmic star formation at since $z=4$. The scalability of our approach is empirically estimated, with the precision in LF parameter estimates found to scale with the number of sources in the stack as $sqrt{N}$. This type of approach will be invaluable in the multi-wavelength analysis of upcoming surveys with the SKA pathfinder facilities; LOFAR, ASKAP and MeerKAT.
63 - L. M. Ker 2011
The existence of a correlation between observed radio spectral index (alpha) and redshift (z) has long been used as a method for locating high-z radio galaxies. We use 9 highly spectroscopically complete radio samples, selected at different frequenci es and flux limits, to determine the efficiency of this method, and compare consistently observed correlations between alpha, luminosity, linear size, and redshift. We observe a weak correlation between z and alpha which remains even when Malmquist bias is removed. The strength of this correlation depends on both the k-correction and sample selection frequency, in addition to the frequency at which alpha is measured, and consistent results for both high and low frequency selected samples are only seen if analysis is restricted to just extended radio galaxies. Many of the highest redshift radio galaxies are very compact and often display a negatively curved or peaked spectrum, and therefore the low-frequency radio spectrum as a whole should be studied; this is something for which the LOFAR will be crucial. We quantify both the efficiency and the completeness of various techniques used to select high-z radio galaxies. A steep-spectrum cut applied to low-frequency selected samples can more than double the fraction of high-z sources, but at a cost of excluding over half of the high-z sources present in the original sample. An angular size cut is an almost as equally effective method as a steep-spectrum cut, and works for both high and low frequency selected samples. In multi-wavelength data, selection first of infrared-faint radio sources remains by far the most efficient method of selecting high-z sources. We present a simple method for selecting high-z radio galaxies, based purely on combining their radio properties of alpha and angular size, with the addition of the K-band magnitude if available.[abridged]
This paper presents a new grid-based method for investigating the evolution of the steep-spectrum radio luminosity function, with the aim of quantifying the high-redshift cut-off suggested by previous work. To achieve this, the Combined EIS-NVSS Surv ey of Radio Sources (CENSORS) has been developed; this is a 1.4 GHz radio survey, containing 135 sources complete to a flux density of 7.2 mJy, selected from the NRAO VLA Sky Survey (NVSS) over 6 deg^2 of the ESO Imaging Survey (EIS) Patch D. The sample is currently 73% spectroscopically complete, with the remaining redshifts estimated via the K-z or I-z magnitude-redshift relation. CENSORS is combined with additional radio data from the Parkes All-Sky, Parkes Selected Regions, Hercules and VLA COSMOS samples to provide comprehensive coverage of the radio power vs. redshift plane. The redshift distributions of these samples, together with radio source count determinations, and measurements of the local luminosity function, provide the input to the fitting process. The modelling reveals clear declines, at > 3sigma significance, in comoving density at z > 0.7 for lower luminosity sources (log P = 25-26); these turnovers are still present at log P > 27, but move to z > 3, suggesting a luminosity-dependent evolution of the redshift turnover, similar to the `cosmic downsizing seen for other AGN populations. These results are shown to be robust to the estimated redshift errors and to increases in the spectral index for the highest redshift sources. Analytic fits to the best-fitting steep spectrum grid are provided so that the results presented here can be easily accessed by the reader, as well as allowing plausible extrapolations outside of the regions covered by the input datasets
129 - D. Sobral 2009
New results are presented, as part of the Hi-z Emission Line Survey (HiZELS), from the largest area survey to date (1.4 sq.deg) for Lyman-alpha emitters (LAEs) at z~9. The survey, which is primarily targeting H-alpha emitters at z<3, uses the Wide Fi eld CAMera on the United Kingdom Infrared Telescope and a custom narrow-band filter in the J band and reaches a Lyman-alpha luminosity limit of ~10^43.8 erg/s over a co-moving volume of 1.12x10^6 Mpc^3 at z=8.96+-0.06. Only 2 candidates were found out of 1517 line emitters and those were rejected as LAEs after follow-up observations. The limit on the space density of bright LAEs is improved by 3 orders of magnitude, consistent with suppression of the bright end of the Lyman-alpha luminosity function beyond z~6. Combined with upper limits from smaller but deeper surveys, this rules out some of the most extreme models for high-redshift LAEs. The potential contamination of future narrow-band Lyman-alpha surveys at z>7 by Galactic brown dwarf stars is also examined, leading to the conclusion that such contamination may well be significant for searches at 7.7<z<8.0, 9.1<z<9.5 and 11.7 < z < 12.2.
71 - D. Sobral 2009
New results from a large survey of H-alpha emission-line galaxies at z=0.84 using WFCAM/UKIRT and a custom narrow-band filter in the J band are presented as part of the HiZELS survey. Reaching an effective flux limit of 1e-16 erg/s/cm^2 in a comoving volume of 1.8e5 Mpc^3, this represents the largest and deepest survey of its kind ever done at z~1. There are 1517 potential line emitters detected across 1.4 sq.deg of the COSMOS and UKIDSS UDS fields, of which 743 are selected as H-alpha emitters. These are used to calculate the H-alpha luminosity function, which is well-fitted by a Schechter function with phi*=10^(-1.92+-0.10) Mpc^-3, L*=10^(42.26+-0.05)erg/s, and alpha=-1.65+-0.15. The integrated star formation rate density (SFRD) at z=0.845 is 0.15+-0.01 M_sun/yr/Mpc^3. The results robustly confirm a strong evolution of SFRD from the present day out to z~1 and then flattening to z~2, using a single star-formation indicator. Out to z~1, both the characteristic luminosity and space density of the H-alpha emitters increase significantly; at higher redshifts, L* continues to increase, but phi* decreases. The z=0.84 H-alpha emitters are mostly disk galaxies (82+-3%), while 28+-4% of the sample show signs of merger activity and contribute ~20% to the total SFRD. Irregulars and mergers dominate the H-alpha luminosity function above L*, while disks are dominant at fainter luminosities. These results demonstrate that it is the evolution of normal disk galaxies that drives the strong increase in the SFRD from the current epoch to z~1, although the continued strong evolution of L* beyond z=1 suggests an increasing importance of merger activity at higher redshifts.
A catalogue of 14453 radio-loud AGN with 1.4 GHz fluxes above 3.5 mJy in the redshift range 0.4<z<0.8, has been constructed from the cross-correlation of the NVSS and FIRST radio surveys with the MegaZ-LRG catalogue of luminous red galaxies derived f rom Sloan Digital Sky Survey imaging data. New techniques were developed for extending the cross-correlation algorithm to FIRST detections that are below the nominal 1 mJy S/N limit of the catalogued sources. We estimate a reliability of ~98.3%, and completeness level (for LRGS) of about 95% for our new catalogue. We present a new determination of the luminosity function of radio AGN at z~0.55 and compare this to the luminosity function of nearby (z~0.1) radio sources from the SDSS main survey. The comoving number density of radio AGN with luminosities less than 10^{25} W Hz^{-1} increases by a factor ~1.5 between z=0.1 and z=0.55. At higher lumiosities, this factor increases sharply, reaching values of more than 10 at radio luminosities larger than 10^{26} W Hz^{-1}. We then study how the relation between radio AGN and their host galaxies evolves with redshift. Our main conclusion is that the fraction of radio-loud AGN increases towards higher redshift in all massive galaxies, but the evolution is particularly strong for the lower mass galaxies in our sample. These trends may be understood if there are two classes of radio galaxies (likely associated with the radio and quasar mode dichotomy) that have different fuelling/triggering mechanisms and hence evolve in different ways.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا