ﻻ يوجد ملخص باللغة العربية
The promise of multi-wavelength astronomy has been tempered by the large disparity in sensitivity and resolution between different wavelength regimes. Here we present a statistical approach which attempts to overcome this by fitting parametric models directly to image data. Specifically, we fit a model for the radio luminosity function (LF) of star-forming galaxies to pixel intensity distributions at 1.4 GHz coincident with near-IR selected sources in COSMOS. Taking a mass-limited sample in redshift bins across the range $0<z<4$ we are able to fit the radio LF with ~0.2 dex precision in the key parameters (e.g. Phi*,L*). Good agreement is seen between our results and those using standard methods at radio and other wavelengths. Integrating our luminosity functions to get the star formation rate density we find that galaxies with a stellar mass greater than $10^{9.5},$M$_{odot}$ contribute at least 50 per cent of cosmic star formation at since $z=4$. The scalability of our approach is empirically estimated, with the precision in LF parameter estimates found to scale with the number of sources in the stack as $sqrt{N}$. This type of approach will be invaluable in the multi-wavelength analysis of upcoming surveys with the SKA pathfinder facilities; LOFAR, ASKAP and MeerKAT.
[Abridged] This paper aims at providing new conservative constraints to the cosmic star-formation history from the empirical modeling of mid- and far-infrared data. We perform a non-parametric inversion of galaxy counts at 15, 24, 70, 160, and 850 mi
We investigate the star formation properties of ~800 sources detected in one of the deepest radio surveys at 1.4 GHz. Our sample spans a wide redshift range (~0.1 - 4) and about four orders of magnitude in star formation rate (SFR). It includes both
We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) wh
Major progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly ont
We exploit the vastly increased sensitivity of the Expanded Very Large Array (EVLA) to study the radio continuum and polarization properties of the post-starburst, dwarf irregular galaxy IC10 at 6 cm, at a linear resolution of ~50 pc. We find close a