ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - P. Lazic , Z. Crljen 2014
We showed how a structural modification of graphene, which gives a carbon allotrope graphyne, can induce an energy gap at the K point of the Brillouin zone. Upon adsorption on metallic surfaces, the same mechanism is responsible for the further modif ication of the energy gap which occurs via the charge transfer mechanism. We performed the calculation based on the density functional theory with the novel non-local vdW-DF correlation of the adsorption of graphyne on Cu(111), Ni(111) and Co(0001) surfaces and showed the dependence of the gap change on the charge transfer in the system. The binding of graphyne appears to be stronger than of graphene on the same surfaces.
We present a novel technique by which highly-segmented electrostatic configurations can be solved. The Robin Hood method is a matrix-inversion algorithm optimized for solving high density boundary element method (BEM) problems. We illustrate the capa bilities of this solver by studying two distinct geometry scales: (a) the electrostatic potential of a large volume beta-detector and (b) the field enhancement present at surface of electrode nano-structures. Geometries with elements numbering in the O(10^5) are easily modeled and solved without loss of accuracy. The technique has recently been expanded so as to include dielectrics and magnetic materials.
We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily han dle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We demonstrate inclusion of dielectric material by calculating the electric field around different types of dielectric spacers.
379 - R. Brako , D. Sokcevic , P. Lazic 2010
We calculate the properties of a graphene monolayer on the Ir(111) surface, using the model in which the periodicities of the two structures are assumed equal, instead of the observed slight mismatch which leads to a large superperiodic unit cell. We use the Density Functional Theory approach supplemented by the recently developed vdW-DF nonlocal correlation functional. The latter is essential for treating the van der Waals interaction, which is crucial for the adsorption distances and energies of the rather weakly bound graphene. When additional iridium atoms are put on top of graphene, the electronic structure of C atoms acquires the sp3 character and strong bonds with the iridium atoms are formed. We discuss the validity of the approximations used, and the relevance for other graphene-metal systems.
In this study we investigated by means of density functional theory calculations the adsorption geometry and bonding mechanism of a single thymine (C$_5$H$_6$N$_2$O$_2$) molecule on Cu(110) surface. In the most stable energetic configuration, the mol ecular plane is oriented perpendicular to substrate along the $[1bar{1}0]$ direction. For this adsorption geometry, the thymine molecule interacts with the surface via a deprotonated nitrogen atom and two oxygen ones such that the bonding mechanism involves a strong hybridization between the highest occupied molecular orbitals (HOMOs) and the d-states of the substrate. In the case of a parallel adsorption geometry, the long-range van der Waals interactions play an important role on both the molecule-surface geometry and adsorption energy. Their specific role was analyzed by means of a semi-empirical and the seamless methods. In particular, for a planar configuration, the inclusion of the dispersion effects dramatically changes the character of the adsorption process from physisorption to chemisorption. Finally, we predict the real-space topography of the molecule-surface interface by simulating scanning tunneling microscopy (STM) images. From these simulations we anticipate that only certain adsorption geometries can be imaged in STM experiments.
We performed first-principles calculations aimed to investigate the role of an heteroatom like N in the chemical and the long-range van der Waals (vdW) interactions for a flat adsorption of several pi-conjugated molecules on the Cu(110) surface. Our study reveals that the alignment of the molecular orbitals at adsorbate-substrate interface depends on the number of heteroatoms. As a direct consequence, the molecule-surface vdW interactions involve not only pi-like orbitals which are perpendicular to the molecular plane but also sigma-like orbitals delocalized in the molecular plane.
Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post DFT ca lculation approach, i.e. by applying the functional on the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N^2 where N is the number of points in which charge density is defined, and a massively parallel calculation is essential for a wider applicability of the new approach. In this article we present a code which acomplishes this goal.
We study the chemisorption of CO molecule into sites of different coordination on (111) surfaces of late 4d and 5d transition metals. In an attempt to solve the well-known CO adsorption puzzle we have applied the relatively new vdW-DF theory of nonlo cal correlation. The application of the vdW-DF functional in all considered cases improves or completely solves the discrepancies of the adsorption site preference and improves the value of the adsorption energy. By introducing a cutoff distance for nonlocal interaction we pinpoint the length scale at which the correlation plays a major role in the systems considered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا