ترغب بنشر مسار تعليمي؟ اضغط هنا

JuNoLo - Julich Non Local code for parallel calculation of vdW-DF nonlocal density functional theory

107   0   0.0 ( 0 )
 نشر من قبل Predrag Lazic
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post DFT calculation approach, i.e. by applying the functional on the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N^2 where N is the number of points in which charge density is defined, and a massively parallel calculation is essential for a wider applicability of the new approach. In this article we present a code which acomplishes this goal.



قيم البحث

اقرأ أيضاً

Recent experiments demonstrate the synthesis of 2D black arsenic exhibits excellent electronic and transport properties for nanoscale device applications. Herein, we study by first principle calculations density functional theory together with non eq uilibrium Greens function methods, the structural, electronic, adsorption strength, charge transfer, and transport properties of five gas molecules CO, CO2, NO, NO2, and NH3 on a monolayer of black arsenic. Our findings suggest optimum sensing performance of black arsenic that can even surpass that of other 2D material such as graphene. Further, we note the optimum adsorption sites for all the five gas molecules on the black arsenic and significant charge transfer between the gas molecules and black arsenic are responsible for optimum adsorption strength. Particularly, the significant charger transfer is a sign that the interaction between the target gas molecule and nanoscale device is sufficient to yield noticeable changes in the electronic transport properties. As a proof of principle, we have examined the sensitivity of a modeled nano-scale device towards CO, CO2, NO, NO2, and NH3 gas molecules, indicating that it is indeed possible to reliably detect all the five gas molecules. Thus, based on all these findings, such as sensitivity and selectivity to all the five gas molecules adsorption make black arsenic a promising material as an optimum gas sensor nano-scale device.
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transf ormation, and we show that unique atomic energies can be calculated by integrating over Bader and charge-neutral volumes for each atom. Numerically, we implement the energy density method in the framework of the Vienna ab initio simulation package (VASP) for both norm-conserving and ultrasoft pseudopotentials and the projector augmented wave method, and use a weighted integration algorithm to integrate the volumes. The surface energies and point defect energies can be calculated by integrating the energy density over the surface region and the defect region, respectively. We compute energies for several surfaces and defects: the (110) surface energy of GaAs, the mono-vacancy formation energies of Si, the (100) surface energy of Au, and the interstitial formation energy of O in the hexagonal close-packed Ti crystal. The surface and defect energies calculated using our method agree with size-converged calculations of the difference between the total energies of the system with and without the defect. Moreover, the convergence of the defect energies with size can be found from a single calculation.
We examine the performance of a recently developed nonlocal density functional in predicting a model noncovalent interaction, the weak bond between an aromatic $pi$ system and an aliphatic C-H group. The new functional is a significant improvement ov er traditional density functionals, providing results which compare favorably to high-level quantum-chemistry techniques but at considerably lower computational cost. Interaction energies in several model C-H/$pi$ systems are in generally good agreement with coupled-cluster calculations, though equilibrium distances are consistently overpredicted when using the revPBE functional for exchange. The new functional correctly predicts changes in energy upon addition of halogen substituents.
Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (x c) functionals lack the proper long-range behavior. Furthermore, optical spectra of bulk solids calculated with TDDFT often lack the required resolution to distinguish discrete, weakly bound excitons from the continuum. We adapt the Casida equation formalism for molecular excitations to periodic solids, which allows us to obtain exciton binding energies directly. We calculate exciton binding energies for both small- and large-gap semiconductors and insulators, study the recently proposed bootstrap xc kernel [S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011)], and extend the formalism to triplet excitons.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of n ew classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs. This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا