ﻻ يوجد ملخص باللغة العربية
We calculate the properties of a graphene monolayer on the Ir(111) surface, using the model in which the periodicities of the two structures are assumed equal, instead of the observed slight mismatch which leads to a large superperiodic unit cell. We use the Density Functional Theory approach supplemented by the recently developed vdW-DF nonlocal correlation functional. The latter is essential for treating the van der Waals interaction, which is crucial for the adsorption distances and energies of the rather weakly bound graphene. When additional iridium atoms are put on top of graphene, the electronic structure of C atoms acquires the sp3 character and strong bonds with the iridium atoms are formed. We discuss the validity of the approximations used, and the relevance for other graphene-metal systems.
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructu
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
We study the interaction energy between two graphene nanoribbons by first principles calculations, including van der Waals interactions and spin polarization. For ultranarrow zigzag nanoribbons, the direct stacking is even more stable than Bernal, co
Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transitio
Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline