ترغب بنشر مسار تعليمي؟ اضغط هنا

198 - Z. S. Lim , L. E. Chow , P. Yang 2021
Using SrRuO3-based thin film heterostructures, we aim to resolve the two debated interpretations that distinguish between the genuine Topological Hall Effect (THE) and the artefactual humps produced from overlapping double Karplus-Luttinger Anomalous Hall Effects (KL-AHE), without magnetic imaging. Firstly, we selected two heterostructures with similar Hall Effect but with contrasting octahedral rotations/tilts, providing a clue to determining the presence/absence of Dzyaloshinskii-Moriya Interaction. Secondly, we employ the {theta}-rotation of magnetic field from out-of-plane to in-plane as the critical judgemental tool. The first heterostructure showing field-position of Hall hump diverging with ~1/cos({theta}) is correctly reproduced using the double KL-AHEs. Yet, the second one showing constant hump field versus {theta} behaviour agrees with a micromagnetic simulation with Neel-Skyrmions and is thus convincingly assigned as THE. Lastly, for a general system evolving with increasing magnetic field from two-dimensional Skyrmion-lattice into collinear ferromagnetic in the real-space, we further discuss about the corresponding evolution of k-space band structure from gapped massive Dirac Fermion into Weyl Fermion, consistent to past literatures. Its associated transformation from Mirror Anomaly into Chiral Anomaly is detectable via electrical transport and further assisted in resolving the aforementioned debate. We hence emphasize the two schemes as useful, generic electrical measurement protocols for future search of magnetic Skyrmions.
223 - W. Feng , P. Yang , B. K. Yuan 2021
The Kondo effect typically arises from the spin-flip scattering between the localized magnetic moment of the impurity and the delocalized electrons in the metallic host, which leads to a variety of intriguing phenomena. Here, by using scanning tunnel ling microscopy/spectroscopy (STM/STS), we present the Kondo effect and subatomic features of single U adatom on graphene/6H-SiC(0001). A dip spectral feature can be observed around the Fermi energy, which is termed as the fingerprint of the Kondo resonance in STS; in addition, two subatomic features with different symmetries: a three-lobe structure and a donghnut-like structure can be observed from the dI/dV maps. The Kondo resonance is only detectable within 5~AA~of the lateral distance from the U atom center, which is much smaller than the distances observed in Co atoms on different surfaces, indicating the more localized 5$f$ states than 3$d$ orbitals. By comparing with density functional theory calculations, we find that the two subatomic features displaying different symmetries originate from the selective hybridization between U 6$d$, 5$f$ orbitals and the $p_z$ orbitals from two inequivalent C atoms of the multilayer graphene.
80 - K. Hou , C. J. Zhu , Y. P. Yang 2019
We theoretically study the quantum interference induced photon blockade phenomenon in atom cavity QED system, where the destructive interference between two different transition pathways prohibits the two-photon excitation. Here, we first explore the single atom cavity QED system via an atom or cavity drive. We show that the cavity-driven case will lead to the quantum interference induced photon blockade under a specific condition, but the atom driven case cant result in such interference induced photon blockade. Then, we investigate the two atoms case, and find that an additional transition pathway appears in the atom-driven case. We show that this additional transition pathway results in the quantum interference induced photon blockade only if the atomic resonant frequency is different from the cavity mode frequency. Moreover, in this case, the condition for realizing the interference induced photon blockade is independent of the systems intrinsic parameters, which can be used to generate antibunched photon source both in weak and strong coupling regimes.
We derive a continuity equation for the evolution of the SU(2) Wigner function under nonlinear Kerr evolution. We give explicit expressions for the resulting quantum Wigner current, and discuss the appearance of the classical limit. We show that the global structure of the quantum current significantly differs from the classical one, which is clearly reflected in the form of the corresponding stagnation lines.
91 - X. Liu , P.P. Yang , J. Liu 2017
We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504, and BL Lacertae) on December 18--21, 2015 by using the radio telescope in Effelsberg (Germany) a nd several optical telescopes in Asia, Europe, and America. After calibration, the light curves from both 5 GHz radio band and the optical R band were obtained, although the data were not smoothly sampled over the sampling period of about four days. We tentatively analyse the amplitudes and time scales of the variabilities, and any possible periodicity. The blazars vary significantly in the radio (except 3C66A and BL Lacertae with only marginal variations) and optical bands on intra- and inter-day time scales, and the source B0925+504 exhibits a strong quasi-periodic radio variability. No significant correlation between the radio- and optical-band variability appears in the five sources, which we attribute to the radio IDV being dominated by interstellar scintillation whereas the optical variability comes from the source itself. However, the radio- and optical-band variations appear to be weakly correlated in some sources and should be investigated based on well-sampled data from future observations.
79 - W. H. Xu , L. P. Yang , M. P. Qin 2015
We have developed a different quantum transfer matrix method to accurately determine thermodynamic properties of the Hofstadter model. This method resolves a technical problem which is intractable by other methods and makes the calculation of physica l quantities of the Hofstadter model in the thermodynamic limit at finite temperatures feasible. It is shown that the quantum correction to the de Haas-van Alphen (dHvA) oscillation of magnetization bears the energy structure of Hofstadter butterfly. The measurement of this quantum correction, which can be materialized on the superlattice or cold atom systems, can reveal unambiguously the Hofstadter fractal energy spectrum.
The structural, electronic, and optical properties of 4 A single-walled carbon nanotubes (SWNTs) contained inside the zeolite channels have been studied based upon the density-functional theory in the local-density approximation (LDA). Our calculated results indicate that the relaxed geometrical structures for the smallest SWNTs in the zeolite channels are much different from those of the ideal isolated SWNTs, producing a great effect on their physical properties. It is found that all three kinds of 4 A SWNTs can possibly exist inside the Zeolite channels. Especially, as an example, we have also studied the coupling effect between the ALPO_4-5 zeolite and the tube (5,0) inside it, and found that the zeolite has real effects on the electronic structure and optical properties of the inside (5,0) tube.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا